cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A102144 Iccanobirt prime indices (14 of 15): Indices of prime numbers in A102124.

Original entry on oeis.org

4, 6, 7, 12, 25, 43, 57, 165, 277, 368, 711, 1005, 1135, 1246, 2032, 3513, 5685, 8222, 10939, 26435
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

No more terms through 5000.
a(21) > 50000. - Robert Price, Nov 10 2018

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] =
       IntegerReverse[IntegerReverse[a[n - 1]] + IntegerReverse[a[n - 2]] + a[n - 3]];
    a[0] = 0; a[1] = 0; a[2] = 1;
    Select[Range[0, 5000], PrimeQ[a[#]] &] (* Robert Price, Apr 10 2020 *)

Formula

A102124(a(n)) = A102164(n).

Extensions

a(17)-a(20) from Robert Price, Nov 10 2018

A102164 Iccanobirt primes (14 of 15): Prime numbers in A102124.

Original entry on oeis.org

2, 7, 31, 823, 8359081, 838645835501, 3454952325449641, 39037487994583246494995203209075812905781919221, 3849036379333595071904298941172131921008511669448798002135139108572992781805641
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Crossrefs

Formula

a(n) = A102124(A102144(n)).

Extensions

Offset changed to 1 by Jinyuan Wang, Aug 15 2021

A102184 Iccanobirt semiprime indices (14 of 15): Indices of semiprime numbers in A102124.

Original entry on oeis.org

5, 11, 19, 22, 28, 29, 42, 61, 68, 72, 108, 120, 126, 211, 223, 281, 301, 308, 333, 344, 347, 363, 435, 462, 519, 538, 605
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Crossrefs

Formula

A102124(a(n)) = A102204(n).

Extensions

a(14)-a(15) from Robert Price, Nov 10 2018
Offset changed to 1 and a(16)-a(27) from Jinyuan Wang, Aug 15 2021

A102204 Iccanobirt semiprimes (14 of 15): Semiprime numbers in A102124.

Original entry on oeis.org

4, 581, 72451, 789881, 92901661, 80528542, 89682664933, 36628597458132971, 8945663663547804571, 28420671229606403893, 9998333571760746216777082258511, 87894839031505105300173553652227351, 395837506159704761826300702753027374, 83686138907389068924615617486884954496701274604545267754241
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Crossrefs

Formula

a(n) = A102124(A102184(n)).

Extensions

Offset changed to 1 and more terms from Jinyuan Wang, Aug 15 2021

A102125 Iccanobirt numbers (15 of 15): a(n) = R(R(a(n-1)) + R(a(n-2)) + R(a(n-3))), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 42, 44, 18, 941, 472, 405, 729, 5071, 6313, 8675, 90601, 31591, 9853, 11733, 31865, 31149, 736481, 365533, 313416, 3154311, 9834802, 5123383, 7112507, 12796921, 35055832, 19867834, 56610708, 906334841, 561210372
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Maple
    R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    a:= proc(n) option remember; `if`(n<3, binomial(n,2),
          R(R(a(n-1)) + R(a(n-2)) + R(a(n-3))))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 18 2014
  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[R[a[n-1]]+R[a[n-2]]+R[a[n-3]]];Table[a[n], {n, 0, 40}]
    rev[n_]:=FromDigits[Reverse[IntegerDigits[n]]]; nxt[{a_, b_, c_}] := {b, c, rev[rev[a] + rev[b] + rev[c]]}; Transpose[NestList[nxt,{0,0,1},40]][[1]] (* Harvey P. Dale, Mar 20 2015 *)
    nxt[{a_,b_,c_}]:=With[{ir=IntegerReverse},{b,c,ir[ir[a]+ir[b]+ir[c]]}]; NestList[nxt,{0,0,1},40][[;;,1]] (* Harvey P. Dale, Jul 22 2025 *)

Formula

a(n) = A004086(A102117(n)).

A102116 Iccanobirt numbers (6 of 15): a(n) = R(a(n-1)) + R(a(n-2)) + a(n-3), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 13, 42, 62, 63, 104, 499, 1458, 9639, 18409, 101308, 903221, 943819, 1141966, 8512981, 9527388, 11871383, 55668051, 62931854, 72771964, 148399704, 517843422, 705114520, 398159926, 1173206822, 3621090124, 6895084900
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[a[n-1]]+R[a[n-2]]+a[n-3];Table[a[n], {n, 0, 40}]
    nxt[{a_,b_,c_}]:={b,c,FromDigits[Reverse[IntegerDigits[c]]]+ FromDigits[ Reverse[ IntegerDigits[b]]]+a}; Transpose[NestList[nxt,{0,0,1},40]][[1]] (* Harvey P. Dale, Oct 10 2014 *)

Formula

A004086(a(n)) = A102124(n).

A102118 Iccanobirt numbers (8 of 15): a(n) = R(a(n-1) + a(n-2) + a(n-3)), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 24, 26, 18, 86, 31, 531, 846, 8041, 8149, 63071, 16297, 71578, 649051, 629637, 6620531, 9129987, 55108361, 97885807, 551421261, 924514407, 5741283751, 9149127127, 58252941851, 92725334137, 511304721061
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[a[n-1]+a[n-2]+a[n-3]];Table[a[n], {n, 0, 40}]
    Transpose[NestList[{#[[2]],#[[3]],FromDigits[Reverse[IntegerDigits[Total[ #]]]]}&,{0,0,1},40]][[1]] (* Harvey P. Dale, Dec 04 2012 *)

Extensions

Incorrect formula removed by Georg Fischer, Dec 18 2020
Showing 1-7 of 7 results.