cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A102111 Iccanobirt numbers (1 of 15): a(n) = a(n-1) + a(n-2) + R(a(n-3)), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 99, 185, 328, 612, 1521, 2956, 4693, 8900, 20185, 33049, 53332, 144483, 291848, 459666, 1135955, 2443813, 4246722, 12285846, 19716010, 34278280, 118852511, 154192582, 281332336, 550783729, 1117407516, 2301424427
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Magma
    a:=[0,0,1];[n le 3 select a[n] else Self(n-1) + Self(n-2) + Seqint(Reverse(Intseq(Self(n-3)))):n in [1..36]]; // Marius A. Burtea, Oct 23 2019
  • Maple
    read("transforms") ;
    A102111 := proc(n)
        option remember;
        if n <= 2 then
            return op(n+1,[0,0,1]) ;
        else
            return procname(n-1)+procname(n-2)+digrev(procname(n-3)) ;
        end if;
    end proc:
    seq(A102111(n),n=0..20) ; # R. J. Mathar, Nov 17 2012
  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=a[n-1]+a[n-2]+R[a[n-3]];Table[a[n], {n, 0, 40}]
    nxt[{a_,b_,c_}]:={b,c,IntegerReverse[a]+b+c}; NestList[nxt,{0,0,1},40][[;;,1]] (* Harvey P. Dale, Jul 18 2023 *)
  • Python
    def R(n):
      n_str = str(n)
      reversedn_str = n_str[::-1]
      reversedn = int(reversedn_str)
      return reversedn
    def A(n):
      if n == 0:
        return 0
      elif n == 1:
        return 0
      elif n == 2:
        return 1
      elif n >= 3:
        return A(n-1)+A(n-2)+R(A(n-3))
    for i in range(0,20):
      print(A(i)) # Dylan Delgado, Oct 23 2019
    

Formula

A004086(a(n)) = A102119(n).

A102145 Iccanobirt prime indices (15 of 15): Indices of prime numbers in A102125.

Original entry on oeis.org

4, 6, 7, 11, 30, 31, 50, 64, 77, 146, 163, 185, 210, 354, 367, 402, 3137, 3228, 3639, 11756, 22054, 23126
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

No more terms through 5000.
a(23) > 50000. - Robert Price, Nov 11 2018

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] =
       IntegerReverse[IntegerReverse[a[n - 1]] + IntegerReverse[a[n - 2]] +
         IntegerReverse[a[n - 3]]];
    a[0] = 0; a[1] = 0; a[2] = 1;
    Select[Range[0, 5000], PrimeQ[a[#]] &] (* Robert Price, Apr 10 2020 *)

Formula

A102125(a(n)) = A102165(n).

Extensions

a(20)-a(22) from Robert Price, Nov 11 2018

A102151 Iccanobirt primes (1 of 15): Prime numbers in A102111.

Original entry on oeis.org

2, 7, 13, 33049, 118852511, 4737081270498735525597185686764838592126526518160799, 1077332507131387702854919470217222614007309564248616024722926341483527602546317
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Crossrefs

Formula

a(n) = A102111(A102131(n)).

A102132 Iccanobirt prime indices (2 of 15): Indices of prime numbers in A102112.

Original entry on oeis.org

4, 6, 7, 11, 38, 45, 176, 1148, 3097, 7601, 9258, 47435
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

No more terms through 5000.
a(13) > 50000. - Robert Price, Nov 07 2018

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = a[n - 1] + IntegerReverse[a[n - 2]] + a[n - 3];
    a[0] = 0; a[1] = 0; a[2] = 1;
    Select[Range[0, 5000], PrimeQ[a[#]] &] (* Robert Price, Apr 10 2020 *)

Formula

A102112(a(n)) = A102152(n).

Extensions

a(10)-a(12) from Robert Price, Nov 07 2018

A102144 Iccanobirt prime indices (14 of 15): Indices of prime numbers in A102124.

Original entry on oeis.org

4, 6, 7, 12, 25, 43, 57, 165, 277, 368, 711, 1005, 1135, 1246, 2032, 3513, 5685, 8222, 10939, 26435
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

No more terms through 5000.
a(21) > 50000. - Robert Price, Nov 10 2018

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] =
       IntegerReverse[IntegerReverse[a[n - 1]] + IntegerReverse[a[n - 2]] + a[n - 3]];
    a[0] = 0; a[1] = 0; a[2] = 1;
    Select[Range[0, 5000], PrimeQ[a[#]] &] (* Robert Price, Apr 10 2020 *)

Formula

A102124(a(n)) = A102164(n).

Extensions

a(17)-a(20) from Robert Price, Nov 10 2018

A102133 Iccanobirt prime indices (3 of 15): Indices of prime numbers in A102113.

Original entry on oeis.org

4, 6, 7, 25, 30, 50, 100, 657, 3158, 3369, 3441, 17549, 19234
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

No more terms through 5000.
No more terms through 6000. - Harvey P. Dale, Sep 10 2016
a(14) > 50000. - Robert Price, Nov 07 2018

Crossrefs

Programs

Formula

A102113(a(n)) = A102153(n).

Extensions

a(12)-a(13) from Robert Price, Nov 07 2018

A102134 Iccanobirt prime indices (4 of 15): Indices of prime numbers in A102114.

Original entry on oeis.org

4, 6, 7, 22, 32, 48, 58, 61, 80, 85, 119, 136, 150, 184, 420, 591, 878, 2447, 30938
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

No more terms through 5000.
No more terms through 7500. From Harvey P. Dale, May 30 2012
a(20) > 50000. - Robert Price, Nov 08 2018

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_}]:={b,c,FromDigits[Reverse[IntegerDigits[c]]]+b+a}; Flatten[ Position[Transpose[NestList[nxt,{0,0,1},2500]][[1]],?PrimeQ]-1] (* _Harvey P. Dale, May 30 2012 *)

Formula

A102114(a(n)) = A102154(n).

Extensions

a(19) from Robert Price, Nov 08 2018

A102135 Iccanobirt prime indices (5 of 15): Indices of prime numbers in A102115.

Original entry on oeis.org

4, 6, 7, 19, 46, 613, 1146, 1500, 1982, 2590, 7278, 13714, 15929
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

No more terms through 5000.
a(14) > 50000. - Robert Price, Nov 08 2018

Crossrefs

Programs

Formula

A102115(a(n)) = A102155(n).

Extensions

a(11)-a(13) from Robert Price, Nov 08 2018

A102136 Iccanobirt prime indices (6 of 15): Indices of prime numbers in A102116.

Original entry on oeis.org

4, 6, 7, 12, 18, 20, 121, 2280, 2521, 8123, 9072, 12411, 27520
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

No more terms through 5000.
a(14) > 50000. - Robert Price, Nov 08 2018

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] =
       IntegerReverse[a[n - 1]] + IntegerReverse[a[n - 2]] + a[n - 3];
    a[0] = 0; a[1] = 0; a[2] = 1;
    Select[Range[0, 5000], PrimeQ[a[#]] &] (* Robert Price, Apr 10 2020 *)

Formula

A102116(a(n)) = A102156(n).

Extensions

a(10)-a(13) from Robert Price, Nov 08 2018

A102137 Iccanobirt prime indices (7 of 15): Indices of prime numbers in A102117.

Original entry on oeis.org

4, 6, 7, 19, 43, 48, 109, 122, 628, 1689, 6208, 6309, 15479, 21651
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

a(15) > 50000. - Robert Price, Nov 09 2018

Crossrefs

Programs

  • Maple
    rev:= proc(n) local i, L;
    L:= convert(n,base, 10);
    add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    A[0]:= 0: A[1]:= 0: A[2]:= 1:
    RA[0]:=0: RA[1]:= 0: RA[2]:= 1:
    count:= 0:
    for n from 3 to 10000 do
      A[n]:= RA[n-1]+RA[n-2]+RA[n-3];
      RA[n]:= rev(A[n]);
      if isprime(A[n]) then count:= count+1; a[count]:= n fi
    od:
    seq(a[i],i=1..count); # Robert Israel, Aug 04 2016
  • Mathematica
    Flatten[Position[Transpose[NestList[nxt,{0,0,1},1700]][[1]],?PrimeQ]]-1 (* _Harvey P. Dale, Nov 28 2015 *)

Formula

A102117(a(n)) = A102157(n).

Extensions

a(11)-a(13) from Robert Israel, Aug 04 2016
a(14) from Robert Price, Nov 09 2018
Showing 1-10 of 16 results. Next