A102131
Iccanobirt prime indices (1 of 15): Indices of prime numbers in A102111.
Original entry on oeis.org
4, 6, 7, 19, 30, 175, 265, 591, 1124, 1369, 4359, 10935, 20422, 20559, 26993
Offset: 1
-
a[n_] := a[n] = a[n - 1] + a[n - 2] + IntegerReverse[a[n - 3]];
a[0] = 0; a[1] = 0; a[2] = 1;
Select[Range[0, 5000], PrimeQ[a[#]] &] (* Robert Price, Apr 10 2020 *)
A102165
Iccanobirt primes (15 of 15): Prime numbers in A102125.
Original entry on oeis.org
2, 7, 31, 941, 7112507, 12796921, 3517479344831, 1899587921740207, 57354010293760755391, 35721164922760679029463000239097478253, 7147924589973841766823293744823574255243111
Offset: 1
A102132
Iccanobirt prime indices (2 of 15): Indices of prime numbers in A102112.
Original entry on oeis.org
4, 6, 7, 11, 38, 45, 176, 1148, 3097, 7601, 9258, 47435
Offset: 1
-
a[n_] := a[n] = a[n - 1] + IntegerReverse[a[n - 2]] + a[n - 3];
a[0] = 0; a[1] = 0; a[2] = 1;
Select[Range[0, 5000], PrimeQ[a[#]] &] (* Robert Price, Apr 10 2020 *)
A102144
Iccanobirt prime indices (14 of 15): Indices of prime numbers in A102124.
Original entry on oeis.org
4, 6, 7, 12, 25, 43, 57, 165, 277, 368, 711, 1005, 1135, 1246, 2032, 3513, 5685, 8222, 10939, 26435
Offset: 1
-
a[n_] := a[n] =
IntegerReverse[IntegerReverse[a[n - 1]] + IntegerReverse[a[n - 2]] + a[n - 3]];
a[0] = 0; a[1] = 0; a[2] = 1;
Select[Range[0, 5000], PrimeQ[a[#]] &] (* Robert Price, Apr 10 2020 *)
A102133
Iccanobirt prime indices (3 of 15): Indices of prime numbers in A102113.
Original entry on oeis.org
4, 6, 7, 25, 30, 50, 100, 657, 3158, 3369, 3441, 17549, 19234
Offset: 1
-
nxt[{a_, b_, c_}] := {b, c, c + IntegerReverse[b] + IntegerReverse[a]}; Flatten[Position[NestList[nxt,{0,0,1},3500][[All,1]],?PrimeQ]]-1 (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale, Sep 10 2016 *)
A102134
Iccanobirt prime indices (4 of 15): Indices of prime numbers in A102114.
Original entry on oeis.org
4, 6, 7, 22, 32, 48, 58, 61, 80, 85, 119, 136, 150, 184, 420, 591, 878, 2447, 30938
Offset: 1
-
nxt[{a_,b_,c_}]:={b,c,FromDigits[Reverse[IntegerDigits[c]]]+b+a}; Flatten[ Position[Transpose[NestList[nxt,{0,0,1},2500]][[1]],?PrimeQ]-1] (* _Harvey P. Dale, May 30 2012 *)
A102135
Iccanobirt prime indices (5 of 15): Indices of prime numbers in A102115.
Original entry on oeis.org
4, 6, 7, 19, 46, 613, 1146, 1500, 1982, 2590, 7278, 13714, 15929
Offset: 1
-
a[n_] := a[n] =
IntegerReverse[a[n - 1]] + a[n - 2] + IntegerReverse[a[n - 3]];
a[0] = 0; a[1] = 0; a[2] = 1;
Select[Range[0, 5000], PrimeQ[a[#]] &] (* Robert Price, Apr 10 2020 *)
nxt[{a_,b_,c_}]:={b,c,Total[IntegerReverse[{a,c}]]+b};Flatten[Position[NestList[nxt,{0,0,1},2600][[;;,1]],?PrimeQ]]-1 (* The program generates the first 10 terms of the sequence. *) (* _Harvey P. Dale, Oct 23 2024 *)
A102136
Iccanobirt prime indices (6 of 15): Indices of prime numbers in A102116.
Original entry on oeis.org
4, 6, 7, 12, 18, 20, 121, 2280, 2521, 8123, 9072, 12411, 27520
Offset: 1
-
a[n_] := a[n] =
IntegerReverse[a[n - 1]] + IntegerReverse[a[n - 2]] + a[n - 3];
a[0] = 0; a[1] = 0; a[2] = 1;
Select[Range[0, 5000], PrimeQ[a[#]] &] (* Robert Price, Apr 10 2020 *)
A102137
Iccanobirt prime indices (7 of 15): Indices of prime numbers in A102117.
Original entry on oeis.org
4, 6, 7, 19, 43, 48, 109, 122, 628, 1689, 6208, 6309, 15479, 21651
Offset: 1
-
rev:= proc(n) local i, L;
L:= convert(n,base, 10);
add(L[-i]*10^(i-1),i=1..nops(L))
end proc:
A[0]:= 0: A[1]:= 0: A[2]:= 1:
RA[0]:=0: RA[1]:= 0: RA[2]:= 1:
count:= 0:
for n from 3 to 10000 do
A[n]:= RA[n-1]+RA[n-2]+RA[n-3];
RA[n]:= rev(A[n]);
if isprime(A[n]) then count:= count+1; a[count]:= n fi
od:
seq(a[i],i=1..count); # Robert Israel, Aug 04 2016
-
Flatten[Position[Transpose[NestList[nxt,{0,0,1},1700]][[1]],?PrimeQ]]-1 (* _Harvey P. Dale, Nov 28 2015 *)
A102138
Iccanobirt prime indices (8 of 15): Indices of prime numbers in A102118.
Original entry on oeis.org
4, 6, 7, 12, 25, 72, 100, 126, 167, 253, 396, 856, 1013, 1172, 1413, 2138, 23926, 28255
Offset: 1
-
a[n_] := a[n] = IntegerReverse[(a[n - 1] + a[n - 2] + a[n - 3])];
a[0] = 0; a[1] = 0; a[2] = 1;
Select[Range[0, 5000], PrimeQ[a[#]] &] (* Robert Price, Apr 10 2020 *)
Showing 1-10 of 15 results.
Comments