cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001204 Continued fraction for e^2.

Original entry on oeis.org

7, 2, 1, 1, 3, 18, 5, 1, 1, 6, 30, 8, 1, 1, 9, 42, 11, 1, 1, 12, 54, 14, 1, 1, 15, 66, 17, 1, 1, 18, 78, 20, 1, 1, 21, 90, 23, 1, 1, 24, 102, 26, 1, 1, 27, 114, 29, 1, 1, 30, 126, 32, 1, 1, 33, 138, 35, 1, 1, 36, 150, 38, 1, 1, 39, 162, 41, 1, 1, 42, 174, 44, 1, 1, 45, 186, 47, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Note that e^2 = 7 + 2/(5 + 1/(7 + 1/(9 + 1/(11 + ...)))) (follows from the fact that A004273 is the continued fraction expansion of tanh(1) = (e^2 - 1)/(e^2 + 1)). - Peter Bala, Jan 15 2022

Examples

			7.389056098930650227230427460... = 7 + 1/(2 + 1/(1 + 1/(1 + 1/(3 + ...)))).
		

References

  • Oskar Perron, Die Lehre von den Kettenbrüchen, 2nd ed., Teubner, Leipzig, 1929, p. 138.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[ E^2, 100]
    LinearRecurrence[{0,0,0,0,2,0,0,0,0,-1},{7,2,1,1,3,18,5,1,1,6,30},80] (* Harvey P. Dale, Dec 30 2023 *)
  • PARI
    contfrac(exp(2))
    
  • PARI
    allocatemem(932245000); default(realprecision, 95000); x=contfrac(exp(2)); for (n=1, 20001, write("b001204.txt", n-1, " ", x[n])); \\ Harry J. Smith, Apr 30 2009

Formula

G.f.: (x^10 - x^8 - x^7 + x^6 + 4x^5 + 3x^4 + x^3 + x^2 + 2x + 7)/(x^5 - 1)^2. - Ralf Stephan, Mar 23 2003
For n > 0, a(5n) = 12n + 6, a(5n+1) = 3n + 2, a(5n+2) = a(5n+3) = 1 and a(5n+4) = 3n + 3. - Dean Hickerson, Mar 25 2003
Sum_{n>=5} (-1)^(n+1)/a(n) = (8*sqrt(3)-3)*Pi/72 - 2*log(2)/3. - Amiram Eldar, May 04 2025

Extensions

More terms from Robert G. Wilson v, Dec 07 2000