cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A003417 Continued fraction for e.

Original entry on oeis.org

2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 1, 1, 22, 1, 1, 24, 1, 1, 26, 1, 1, 28, 1, 1, 30, 1, 1, 32, 1, 1, 34, 1, 1, 36, 1, 1, 38, 1, 1, 40, 1, 1, 42, 1, 1, 44, 1, 1, 46, 1, 1, 48, 1, 1, 50, 1, 1, 52, 1, 1, 54, 1, 1, 56, 1, 1, 58, 1, 1, 60, 1, 1, 62, 1, 1, 64, 1, 1, 66
Offset: 0

Views

Author

Keywords

Comments

This is also the Engel expansion for 3*exp(1/2)/2 - 1/2. - Gerald McGarvey, Aug 07 2004
Sorted with duplicate terms dropped, this is A004277, 1 together with the positive even numbers. - Alonso del Arte, Jan 27 2012
From Peter Bala, Nov 26 2019: (Start)
Related continued fractions expansions:
2*e = [5; 2, 3, 2, 3, 1, 2, 1, 3, 4, 3, 1, 4, 1, 3, 6, 3, 1, 6, ..., 1, 3, 2*n, 3, 1, 2*n, ...].
(1/2)*e = [1; 2, 1, 3, 1, 1, 1, 3, 3, 3, 1, 3, 1, 3, 5, 3, 1, 5, 1, 3, 7, 3, 1, 7, ..., 1, 3, 2*n + 1, 3, 1, 2*n + 1, ...].
4*e = [10, 1, 6, 1, 7, 2, 7, 2, 7, 1, 1, 1, 7, 3, 7, 1, 2, 1, 7, 4, 7, 1, 3, 1, 7, 5, 7, 1, 4, ..., 1, 7, n+1, 7, 1, n, ...].
(1/4)*e = [0, 1, 2, 8, 3, 1, 1, 1, 1, 7, 1, 1, 2, 1, 1, 1, 2, 7, 1, 2, 2, 1, 1, 1, 3, 7, 1, 3, 2, 1, 1, 1, 4, 7, 1, 4, 2, ..., 1, 1, 1, n, 7, 1, n, 2, ...]. (End)

Examples

			2.718281828459... = 2 + 1/(1 + 1/(2 + 1/(1 + 1/(1 + ...))))
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 186.
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 88.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.2.
  • Jay R. Goldman, The Queen of Mathematics, 1998, p. 70.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    numtheory[cfrac](exp(1),100,'quotients'); # Jani Melik, May 25 2006
    A003417:=(2+z+2*z**2-3*z**3-z**4+z**6)/(z-1)**2/(z**2+z+1)**2; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    ContinuedFraction[E, 100] (* Stefan Steinerberger, Apr 07 2006 *)
    a[n_] := KroneckerDelta[1, n] + 2 n/3 - (2 n - 3)/3 DirichletCharacter[3, 1, n]; Table[a[n], {n, 1, 20}] (* Enrique Pérez Herrero, Feb 23 2013 *)
    Table[Piecewise[{{2, n == 0}, {2 (n + 1)/3, Mod[n, 3] == 2}}, 1], {n, 0, 120}] (* Eric W. Weisstein, Jan 05 2019 *)
    Join[{2}, LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 2, 1, 1, 4, 1}, 120]] (* Eric W. Weisstein, Jan 05 2019 *)
    Join[{2}, Table[(2 (n + 4) + (1 - 2 n) Cos[2 n Pi/3] + Sqrt[3] (1 - 2 n) Sin[2 n Pi/3])/9, {n, 120}]] (* Eric W. Weisstein, Jan 05 2019 *)
    Join[{2}, Flatten[Table[{1, 2n, 1}, {n, 40}]]] (* Harvey P. Dale, Jan 21 2020 *)
  • PARI
    contfrac(exp(1)) \\ Alexander R. Povolotsky, Feb 23 2008
    
  • PARI
    { allocatemem(932245000); default(realprecision, 25000); x=contfrac(exp(1)); for (n=1, 10000, write("b003417.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 14 2009
    
  • PARI
    A003417(n)=if(n%3<>2,1+(n==0),(n+1)/3*2) \\ M. F. Hasler, May 01 2013
    
  • Python
    def A003417(n): return 2 if n == 0 else 1 if n % 3 != 2 else (n+1)//3<<1 # Chai Wah Wu, Jul 27 2022
  • Scala
    def eContFracTrio(n: Int): List[Int] = List(1, 2 * n, 1)
    2 +: ((1 to 40).map(eContFracTrio).flatten) // Alonso del Arte, Nov 22 2020, with thanks to Harvey P. Dale
    

Formula

From Paul Barry, Jun 27 2006: (Start)
G.f.: (2 + x + 2*x^2 - 3*x^3 - x^4 + x^6)/(1 - 2*x^3 + x^6).
a(n) = 0^n + Sum{k = 0..n} 2*sin(2*Pi*(k - 1)/3)*floor((2*k - 1)/3)/sqrt(3). [Corrected and simplified by Jianing Song, Jan 05 2019] (End)
a(n) = 2*a(n-3) - a(n-6), n >= 7. - Philippe Deléham, Feb 10 2009
G.f.: 1 + U(0) where U(k)= 1 + x/(1 - x*(2*k + 1)/(1 + x*(2*k + 1) - 1/((2*k + 1) + 1 - (2*k + 1)*x/(x + 1/U(k+1))))); (continued fraction, 5-step). - Sergei N. Gladkovskii, Oct 07 2012
a(3*n-1) = 2*n, a(0) = 2, a(n) = 1 otherwise (i.e., for n+1 > 1, not a multiple of 3). - M. F. Hasler, May 01 2013
E.g.f.: First derivative of (2/9)*exp(x)*(x + 3) + (2/9)*exp(-x/2)*(2*x*cos((sqrt(3)/2)*x+2*Pi/3) - 3*cos((sqrt(3)/2)*x)) + x. - Jianing Song, Jan 05 2019
a(n) = floor(1/(n+1))-(floor(n/3)-floor((n+1)/3))*(2*n-1)/3+1. - Aaron J Grech, Sep 06 2024
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - log(2)/2. - Amiram Eldar, May 03 2025

Extensions

Offset changed by Andrew Howroyd, Aug 07 2024

A072334 Decimal expansion of e^2.

Original entry on oeis.org

7, 3, 8, 9, 0, 5, 6, 0, 9, 8, 9, 3, 0, 6, 5, 0, 2, 2, 7, 2, 3, 0, 4, 2, 7, 4, 6, 0, 5, 7, 5, 0, 0, 7, 8, 1, 3, 1, 8, 0, 3, 1, 5, 5, 7, 0, 5, 5, 1, 8, 4, 7, 3, 2, 4, 0, 8, 7, 1, 2, 7, 8, 2, 2, 5, 2, 2, 5, 7, 3, 7, 9, 6, 0, 7, 9, 0, 5, 7, 7, 6, 3, 3, 8, 4, 3, 1, 2, 4, 8, 5, 0, 7, 9, 1, 2, 1, 7, 9
Offset: 1

Views

Author

N. J. A. Sloane, Jul 15 2002

Keywords

Comments

Also where x^(1/sqrt(x)) is a maximum. - Robert G. Wilson v, Oct 22 2014

Examples

			7.389056098930650...
		

References

  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 1.4, pages 2 and 28-29.

Crossrefs

Cf. A001204 (continued fraction).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Exp(1)^2; // Vincenzo Librandi, Apr 05 2020
  • Mathematica
    RealDigits[E^2, 10, 100][[1]] (* Vincenzo Librandi, Apr 05 2020 *)
  • PARI
    default(realprecision, 20080); x=exp(2); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b072334.txt", n, " ", d)); \\ Harry J. Smith, Apr 30 2009
    

Formula

Equals Sum_{n>=0} Sum_{k>=0} 1/(n!*k!). - Fredrik Johansson, Apr 21 2006
Equals Sum_{n>=0} 2^n/n!. - Daniel Hoyt Nov 20 2020
From Peter Bala, Jan 13 2022: (Start)
e^2 = Sum_{n >= 0} 2^n/n!. Faster converging series include
e^2 = 8*Sum_{n >= 0} 2^n/(p(n-1)*p(n)*n!), where p(n) = n^2 - n + 2 and
e^2 = -48*Sum_{n >= 0} 2^n/(q(n-1)*q(n)*n!), where q(n) = n^3 + 5*n - 2.
e^2 = 7 + Sum_{n >= 0} 2^(n+3)/((n+2)^2*(n+3)^2*n!) and
7/e^2 = 1 - Sum_{n >= 0} (-2)^(n+1)*n^2/(n+2)!.
e^2 = 7 + 2/(5 + 1/(7 + 1/(9 + 1/(11 + ...)))) (follows from the fact that A004273 is the continued fraction expansion of tanh(1) = (e^2 - 1)/ (e^2 + 1)). Cf. A001204. (End)
Equals lim_{n->oo} (Sum_{k=1..n} 1/binomial(n,k)^x)^(n^x), for all real x > 1/2 (Furdui, 2013). - Amiram Eldar, Mar 26 2022

A058282 Continued fraction for e^3.

Original entry on oeis.org

20, 11, 1, 2, 4, 3, 1, 5, 1, 2, 16, 1, 1, 16, 2, 13, 14, 4, 6, 2, 1, 1, 2, 2, 2, 3, 5, 1, 3, 1, 1, 68, 7, 5, 1, 4, 2, 1, 1, 1, 1, 1, 1, 7, 3, 1, 6, 1, 2, 5, 4, 7, 2, 1, 3, 2, 2, 1, 2, 1, 4, 1, 1, 13, 1, 1, 2, 1, 1, 1, 1, 3, 7, 11, 18, 54, 1, 2, 2, 2, 1, 1, 6, 2, 2, 46, 2, 189, 1, 24, 1, 8, 13, 4, 1, 1
Offset: 0

Views

Author

Robert G. Wilson v, Dec 07 2000

Keywords

Examples

			20.085536923187667740928529... = 20 + 1/(11 + 1/(1 + 1/(2 + 1/(4 + ...)))). - _Harry J. Smith_, Apr 30 2009
		

Crossrefs

Programs

  • Maple
    with(numtheory); Digits:=200: cf:=convert(evalf( exp(3)), confrac); # N. J. A. Sloane, Sep 05 2012
  • Mathematica
    ContinuedFraction[ E^3, 100]
  • PARI
    contfrac(exp(1)^3)
    
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(exp(3)); for (n=1, 20001, write("b058282.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 30 2009

Extensions

More terms from Jason Earls, Jul 10 2001

A159824 Continued fraction for Pi^Pi (cf. A073233).

Original entry on oeis.org

36, 2, 6, 9, 2, 1, 2, 5, 1, 1, 6, 2, 1, 291, 1, 38, 50, 1, 2, 5, 4, 1, 2, 2, 1, 5, 1, 4, 13, 2, 1, 4, 3, 3, 1, 2, 25, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 3, 1, 43, 1, 2, 7, 3, 1, 1, 1, 2, 4, 2, 1, 1, 3, 1, 3, 3, 2, 2, 16, 3, 5, 2, 1, 5, 2, 1, 10, 1, 1, 3, 1, 13, 1, 1, 3, 1, 10, 4, 1, 1, 1, 38, 1, 2, 2, 1, 1, 3
Offset: 0

Views

Author

Harry J. Smith, Apr 30 2009

Keywords

Examples

			36.4621596072079117709908260... = 36 + 1/(2 + 1/(6 + 1/(9 + 1/(2 + ...)))).
		

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[Pi^Pi,200] (* Vladimir Joseph Stephan Orlovsky, Jul 20 2010 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^Pi); for (n=1, 20001, write("b159824.txt", n-1, " ", x[n])); }

Extensions

Edited by N. J. A. Sloane, Jul 22 2010

A322506 Factorial expansion of 1/exp(2) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

0, 0, 0, 3, 1, 1, 3, 0, 6, 4, 7, 5, 2, 9, 9, 8, 10, 8, 9, 1, 13, 18, 1, 2, 8, 15, 26, 10, 22, 1, 18, 9, 20, 10, 2, 6, 13, 19, 16, 38, 38, 3, 32, 5, 39, 24, 7, 27, 14, 41, 20, 39, 32, 7, 20, 35, 44, 50, 24, 34, 51, 14, 39, 47, 49, 15, 61, 54, 60, 52, 34, 60, 32, 72, 48, 12, 67, 52, 22, 48
Offset: 1

Views

Author

G. C. Greubel, Dec 12 2018

Keywords

Examples

			1/exp(2) = 0 + 0/2! + 0/3! + 3/4! + 1/5! + 1/6! + 3/7! + 0/8! + 6/9! +...
		

Crossrefs

Cf. A092553 (decimal expansion), 0 U A001204 (continued fraction).
Cf. A054977 (e), A067840 (e^2), A068453 (sqrt(e)), A237420 (1/e).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor(Exp(-2))] cat [Floor(Factorial(n)*Exp(-2)) - n*Floor(Factorial((n-1))*Exp(-2)) : n in [2..80]];
    
  • Mathematica
    With[{b = 1/E^2}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]]
  • PARI
    default(realprecision, 250); b = exp(-2); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))
    
  • Sage
    b=exp(-2);
    def a(n):
        if (n==1): return floor(b)
        else: return expand(floor(factorial(n)*b) -n*floor(factorial(n-1)*b))
    [a(n) for n in (1..80)]
Showing 1-5 of 5 results.