cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A080408 Boustrophedon transform of the continued fraction of e (A003417).

Original entry on oeis.org

2, 3, 6, 14, 35, 116, 448, 1980, 10098, 57840, 368201, 2578384, 19697486, 163017000, 1452918806, 13874348700, 141322966623, 1529472867448, 17526468199148, 211996227034964, 2699219798770446, 36085910558435148, 505406091697374877
Offset: 0

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 17 2003

Keywords

Examples

			We simply apply the Boustrophedon transform to [2,1,2,1,1,4,1,1,6,1,1,8,1,1,...]
		

Crossrefs

Programs

  • Python
    from itertools import count, islice, accumulate
    def A080408_gen(): # generator of terms
        blist = tuple()
        for n in count(1):
            yield (blist := tuple(accumulate(reversed(blist),initial=2 if n == 1 else 1 if n % 3 else n//3<<1)))[-1]
    A080408_list = list(islice(A080408_gen(),25)) # Chai Wah Wu, Jul 27 2022

Formula

a(n) appears to be asymptotic to C*n!*(2/Pi)^n where C = 9.27921365277635263761227970562207183019110298580498662908878310... - Benoit Cloitre and Mark Hudson (mrmarkhudson(AT)hotmail.com)

A080409 Decimal expansion of the number which results when the Boustrophedon transform of the continued fraction of e (A080408, A003417) is interpreted as a continued fraction.

Original entry on oeis.org

2, 3, 1, 5, 9, 8, 4, 7, 3, 6, 1, 5, 7, 8, 9, 1, 3, 8, 3, 3, 7, 8, 5, 9, 5, 3, 5, 0, 9, 2, 0, 4, 0, 6, 8, 1, 6, 1, 7, 4, 4, 9, 6, 8, 5, 7, 3, 8, 1, 3, 5, 7, 7, 6, 4, 3, 4, 2, 2, 0, 8, 1, 7, 7, 1, 2, 1, 0, 1, 9, 5, 9, 8, 7, 2, 8, 7, 6, 9, 0, 1, 2, 7, 4, 5, 7, 1, 9, 8, 7, 0, 1, 3, 2, 2, 3, 8, 5, 3, 5
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 17 2003

Keywords

Examples

			2.315984736157891383378595350920406816174496857381357764342208...
		

Crossrefs

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A001113 Decimal expansion of e.

Original entry on oeis.org

2, 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, 9, 0, 4, 5, 2, 3, 5, 3, 6, 0, 2, 8, 7, 4, 7, 1, 3, 5, 2, 6, 6, 2, 4, 9, 7, 7, 5, 7, 2, 4, 7, 0, 9, 3, 6, 9, 9, 9, 5, 9, 5, 7, 4, 9, 6, 6, 9, 6, 7, 6, 2, 7, 7, 2, 4, 0, 7, 6, 6, 3, 0, 3, 5, 3, 5, 4, 7, 5, 9, 4, 5, 7, 1, 3, 8, 2, 1, 7, 8, 5, 2, 5, 1, 6, 6, 4, 2, 7, 4, 2, 7, 4, 6
Offset: 1

Views

Author

Keywords

Comments

e is sometimes called Euler's number or Napier's constant.
Also, decimal expansion of sinh(1)+cosh(1). - Mohammad K. Azarian, Aug 15 2006
If m and n are any integers with n > 1, then |e - m/n| > 1/(S(n)+1)!, where S(n) = A002034(n) is the smallest number such that n divides S(n)!. - Jonathan Sondow, Sep 04 2006
Limit_{n->infinity} A000166(n)*e - A000142(n) = 0. - Seiichi Kirikami, Oct 12 2011
Euler's constant (also known as Euler-Mascheroni constant) is gamma = 0.57721... and Euler's number is e = 2.71828... . - Mohammad K. Azarian, Dec 29 2011
One of the many continued fraction expressions for e is 2+2/(2+3/(3+4/(4+5/(5+6/(6+ ... from Ramanujan (1887-1920). - Robert G. Wilson v, Jul 16 2012
e maximizes the value of x^(c/x) for any real positive constant c, and minimizes for it for a negative constant, on the range x > 0. This explains why elements of A000792 are composed primarily of factors of 3, and where needed, some factors of 2. These are the two primes closest to e. - Richard R. Forberg, Oct 19 2014
There are two real solutions x to c^x = x^c when c, x > 0 and c != e, one of which is x = c, and only one real solution when c = e, where the solution is x = e. - Richard R. Forberg, Oct 22 2014
This is the expected value of the number of real numbers that are independently and uniformly chosen at random from the interval (0, 1) until their sum exceeds 1 (Bush, 1961). - Amiram Eldar, Jul 21 2020

Examples

			2.71828182845904523536028747135266249775724709369995957496696762772407663...
		

References

  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 400.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 250-256.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.4 Irrational Numbers, p. 85.
  • E. Maor, e: The Story of a Number, Princeton Univ. Press, 1994.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 52.
  • G. W. Reitwiesner, An ENIAC determination of pi and e to more than 2000 decimal places. Math. Tables and Other Aids to Computation 4, (1950). 11-15.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapters 1 and 2, equations 1:7:4, 2:5:4 at pages 13, 20.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 46.

Crossrefs

Cf. A002034, A003417 (continued fraction), A073229, A122214, A122215, A122216, A122217, A122416, A122417.
Expansion of e in base b: A004593 (b=2), A004594 (b=3), A004595 (b=4), A004596 (b=5), A004597 (b=6), A004598 (b=7), A004599 (b=8), A004600 (b=9), this sequence (b=10), A170873 (b=16). - Jason Kimberley, Dec 05 2012
Powers e^k: A092578 (k = -7), A092577 (k = -6), A092560 (k = -5), A092553 - A092555 (k = -2 to -4), A068985 (k = -1), A072334 (k = 2), A091933 (k = 3), A092426 (k = 4), A092511 - A092513 (k = 5 to 7).

Programs

  • Haskell
    -- See Niemeijer link.
    a001113 n = a001113_list !! (n-1)
    a001113_list = eStream (1, 0, 1)
       [(n, a * d, d) | (n, d, a) <- map (\k -> (1, k, 1)) [1..]] where
       eStream z xs'@(x:xs)
         | lb /= approx z 2 = eStream (mult z x) xs
         | otherwise = lb : eStream (mult (10, -10 * lb, 1) z) xs'
         where lb = approx z 1
               approx (a, b, c) n = div (a * n + b) c
               mult (a, b, c) (d, e, f) = (a * d, a * e + b * f, c * f)
    -- Reinhard Zumkeller, Jun 12 2013
  • Maple
    Digits := 200: it := evalf((exp(1))/10, 200): for i from 1 to 200 do printf(`%d,`,floor(10*it)): it := 10*it-floor(10*it): od: # James Sellers, Feb 13 2001
  • Mathematica
    RealDigits[E, 10, 120][[1]] (* Harvey P. Dale, Nov 14 2011 *)

Formula

e = Sum_{k >= 0} 1/k! = lim_{x -> 0} (1+x)^(1/x).
e is the unique positive root of the equation Integral_{u = 1..x} du/u = 1.
exp(1) = ((16/31)*(1 + Sum_{n>=1} ((1/2)^n*((1/2)*n^3 + (1/2)*n + 1)/n!)))^2. Robert Israel confirmed that the above formula is correct, saying: "In fact, Sum_{n=0..oo} n^j*t^n/n! = P_j(t)*exp(t) where P_0(t) = 1 and for j >= 1, P_j(t) = t (P_(j-1)'(t) + P_(j-1)(t)). Your sum is 1/2*P_3(1/2) + 1/2*P_1(1/2) + P_0(1/2)." - Alexander R. Povolotsky, Jan 04 2009
exp(1) = (1 + Sum_{n>=1} ((1+n+n^3)/n!))/7. - Alexander R. Povolotsky, Sep 14 2011
e = 1 + (2 + (3 + (4 + ...)/4)/3)/2 = 2 + (1 + (1 + (1 + ...)/4)/3)/2. - Rok Cestnik, Jan 19 2017
From Peter Bala, Nov 13 2019: (Start)
The series representation e = Sum_{k >= 0} 1/k! is the case n = 0 of the more general result e = n!*Sum_{k >= 0} 1/(k!*R(n,k)*R(n,k+1)), n = 0,2,3,4,..., where R(n,x) is the n-th row polynomial of A269953.
e = 2 + Sum_{n >= 0} (-1)^n*(n+2)!/(d(n+2)*d(n+3)), where d(n) = A000166(n).
e = Sum_{n >= 0} (x^2 + (n+2)*x + n)/(n!(n + x)*(n + 1 + x)), provided x is not zero or a negative integer. (End)
Equals lim_{n -> oo} (2*3*5*...*prime(n))^(1/prime(n)). - Peter Luschny, May 21 2020
e = 3 - Sum_{n >= 0} 1/((n+1)^2*(n+2)^2*n!). - Peter Bala, Jan 13 2022
e = lim_{n->oo} prime(n)*(1 - 1/n)^prime(n). - Thomas Ordowski, Jan 31 2023
e = 1+(1/1)*(1+(1/2)*(1+(1/3)*(1+(1/4)*(1+(1/5)*(1+(1/6)*(...)))))), equivalent to the first formula. - David Ulgenes, Dec 01 2023
From Michal Paulovic, Dec 12 2023: (Start)
Equals lim_{n->oo} (1 + 1/n)^n.
Equals x^(x^(x^...)) (infinite power tower) where x = e^(1/e) = A073229. (End)
Equals Product_{k>=1} (1 + 1/k) * (1 - 1/(k + 1)^2)^k. - Antonio Graciá Llorente, May 14 2024
Equals lim_{n->oo} Product_{k=1..n} (n^2 + k)/(n^2 - k) (see Finch). - Stefano Spezia, Oct 19 2024
e ~ (1 + 9^((-4)^(7*6)))^(3^(2^85)), correct to more than 18*10^24 digits (Richard Sabey, 2004); see Haran and Grime link. - Paolo Xausa, Dec 21 2024.

A007677 Denominators of convergents to e.

Original entry on oeis.org

1, 1, 3, 4, 7, 32, 39, 71, 465, 536, 1001, 8544, 9545, 18089, 190435, 208524, 398959, 4996032, 5394991, 10391023, 150869313, 161260336, 312129649, 5155334720, 5467464369, 10622799089, 196677847971, 207300647060, 403978495031, 8286870547680, 8690849042711
Offset: 0

Views

Author

Keywords

Comments

Same as A113874 without its first two terms. - Jonathan Sondow, Aug 16 2006

Examples

			2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465, 1457/536, 2721/1001, 23225/8544, 25946/9545, 49171/18089, 517656/190435, 566827/208524, 1084483/398959, 13580623/4996032, 14665106/5394991, 28245729/10391023, 410105312/150869313, 438351041/161260336, 848456353/312129649, ...
		

References

  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 88.
  • W. J. LeVeque, Fundamentals of Number Theory. Addison-Wesley, Reading, MA, 1977, p. 240.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007676 (numerators of convergents to e).
Cf. A003417 (continued fraction of e).

Programs

  • Maple
    Digits := 60: E := exp(1); convert(evalf(E),confrac,50,'cvgts'): cvgts;
  • Mathematica
    Denominator[Convergents[E, 40]] (* T. D. Noe, Oct 12 2011 *)
    Denominator[Table[Piecewise[{
       {Hypergeometric1F1[-1 - n/3, -1 - (2 n)/3, 1]/Hypergeometric1F1[-(n/3), -1 - (2 n)/3, -1], Mod[n, 3] == 0},
       {Hypergeometric1F1[1/3 (-2 - n), -(2/3) (2 + n), 1]/Hypergeometric1F1[1/3 (-2 - n), -(2/3) (2 + n), -1], Mod[n, 3] == 1},
       {Hypergeometric1F1[1/3 (-1 - n), 1 - (2 (4 + n))/3, 1]/Hypergeometric1F1[1/3 (-4 - n), 1 - (2 (4 + n))/3, -1], Mod[n, 3] == 2}
    }], {n, 0, 30}]] (* Eric W. Weisstein, Sep 09 2013 *)
    Table[Piecewise[{
        {(1 + (2 n)/3)!/(n/3)! Hypergeometric1F1[-(n/3), -1 - (2 n)/3, -1], Mod[n, 3] == 0},
        {((2 (2 + n))/3)!/((2 + n)/3)! Hypergeometric1F1[1/3 (-2 - n), -(2/3) (2 + n), -1], Mod[n, 3] == 1},
        {((4 + n) (5/3 + (2 n)/3)! )/(3 ((4 + n)/3)!) Hypergeometric1F1[1/3 (-4 - n), 1 - (2 (4 + n))/3, -1], Mod[n, 3] == 2}
    }], {n, 0, 30}]  (* Eric W. Weisstein, Sep 10 2013 *)

A007676 Numerators of convergents to e.

Original entry on oeis.org

2, 3, 8, 11, 19, 87, 106, 193, 1264, 1457, 2721, 23225, 25946, 49171, 517656, 566827, 1084483, 13580623, 14665106, 28245729, 410105312, 438351041, 848456353, 14013652689, 14862109042, 28875761731, 534625820200, 563501581931, 1098127402131, 22526049624551
Offset: 0

Views

Author

Keywords

Comments

Same as A113873 without its first two terms. - Jonathan Sondow, Aug 16 2006

Examples

			2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465, 1457/536, 2721/1001, 23225/8544, 25946/9545, 49171/18089, 517656/190435, 566827/208524, 1084483/398959, 13580623/4996032, 14665106/5394991, 28245729/10391023, 410105312/150869313, 438351041/161260336, 848456353/312129649, ...
		

References

  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 88.
  • W. J. LeVeque, Fundamentals of Number Theory. Addison-Wesley, Reading, MA, 1977, p. 240.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007677 (denominators of convergents to e).
Cf. A003417 (continued fraction of e).

Programs

  • Maple
    Digits := 60: convert(evalf(E),confrac,50,'cvgts'): cvgts;
  • Mathematica
    Numerator[Convergents[E, 30]] (* T. D. Noe, Oct 12 2011 *)
    Numerator[Table[Piecewise[{
       {Hypergeometric1F1[-1 - n/3, -1 - (2 n)/3, 1]/Hypergeometric1F1[-(n/3), -1 - (2 n)/3, -1], Mod[n, 3] == 0},
       {Hypergeometric1F1[1/3 (-2 - n), -(2/3) (2 + n), 1]/Hypergeometric1F1[1/3 (-2 - n), -(2/3) (2 + n), -1], Mod[n, 3] == 1},
       {Hypergeometric1F1[1/3 (-1 - n), 1 - (2 (4 + n))/3, 1]/Hypergeometric1F1[1/3 (-4 - n), 1 - (2 (4 + n))/3, -1], Mod[n, 3] == 2}
    }], {n, 0, 30}]] (* Eric W. Weisstein, Sep 09 2013 *)
    Table[Piecewise[{
       {(-1 + (2 (3 + n))/3)!/(-1 + (3 + n)/3)! Hypergeometric1F1[1/3 (-3 - n), 1 - (2 (3 + n))/3, 1], Mod[n, 3] == 0},
       {((2 (2 + n))/3)!/((2 + n)/3)! Hypergeometric1F1[1/3 (-2 - n), -(2/3) (2 + n), 1], Mod[n, 3] == 1},
       {(5/3 + (2 n)/3)!/((1 + n)/3)! Hypergeometric1F1[1/3 (-1 - n), 1 - (2 (4 + n))/3, 1], Mod[n, 3] == 2}
    }], {n, 0, 30}] (* Eric W. Weisstein, Sep 10 2013 *)

A005131 A generalized continued fraction for Euler's number e.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 1, 1, 22, 1, 1, 24, 1, 1, 26, 1, 1, 28, 1, 1, 30, 1, 1, 32, 1, 1, 34, 1, 1, 36, 1, 1, 38, 1, 1, 40, 1, 1, 42
Offset: 0

Views

Author

Keywords

Comments

Only a(1) = 0 prevents this from being a simple continued fraction. The motivation for this alternate representation is that the simple pattern {1, 2*n, 1} (from n=0) may be more mathematically appealing than the pattern in the corresponding simple continued fraction (at A003417). - Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006
If we consider a(n) = A005131(n+1), n >= 0, then we get the simple continued fraction for 1/(e-1). - Daniel Forgues, Apr 19 2011

References

  • Douglas Hofstadter, "Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought".

Crossrefs

Programs

  • Mathematica
    Table[If[Mod[k, 3] == 1, 2/3*(k - 1), 1], {k, 0, 80}] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006 *)
  • PARI
    a(n)=if(n>=0,[1, 2*(n\3), 1][n%3+1]) \\ Jaume Oliver Lafont, Nov 14 2009

Formula

If n==1 (mod 3), then a(n) = 2*(n-1)/3, otherwise a(n) = 1. - Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006
G.f. = (-x^5 + 2*x^4 - x^3 + x^2 + 1)/(x^6 - 2*x^3 + 1). - Alexander R. Povolotsky, Apr 26 2008
{-a(n)-2*a(n+1)-3*a(n+2)-2*a(n+3)-a(n+4)+2*n+8, a(0) = 1, a(1) = 0, a(2) = 1, a(3) = 1, a(4) = 2, a(5) = 1}. - Robert Israel, May 14 2008
a(n) = 1 + 2*(2*n-5) * (cos(2*Pi*(n-1)/3)+1/2)/9. - David Spitzer, Jan 09 2017

Extensions

Edited by M. F. Hasler, Jan 26 2014

A056072 a(n) = floor(e^e^ ... ^e), with n e's.

Original entry on oeis.org

1, 2, 15, 3814279
Offset: 0

Views

Author

Robert G. Wilson v, Jul 26 2000

Keywords

Comments

The next term is too large to include.
From Vladimir Reshetnikov, Apr 27 2013: (Start)
a(4) = 2331504399007195462289689911...2579139884667434294745087021 (1656521 decimal digits in total), given by initial segment of A085667.
a(5) has more than 10^10^6 decimal digits.
a(6) has more than 10^10^10^6 decimal digits. (End)

Crossrefs

Programs

A001204 Continued fraction for e^2.

Original entry on oeis.org

7, 2, 1, 1, 3, 18, 5, 1, 1, 6, 30, 8, 1, 1, 9, 42, 11, 1, 1, 12, 54, 14, 1, 1, 15, 66, 17, 1, 1, 18, 78, 20, 1, 1, 21, 90, 23, 1, 1, 24, 102, 26, 1, 1, 27, 114, 29, 1, 1, 30, 126, 32, 1, 1, 33, 138, 35, 1, 1, 36, 150, 38, 1, 1, 39, 162, 41, 1, 1, 42, 174, 44, 1, 1, 45, 186, 47, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Note that e^2 = 7 + 2/(5 + 1/(7 + 1/(9 + 1/(11 + ...)))) (follows from the fact that A004273 is the continued fraction expansion of tanh(1) = (e^2 - 1)/(e^2 + 1)). - Peter Bala, Jan 15 2022

Examples

			7.389056098930650227230427460... = 7 + 1/(2 + 1/(1 + 1/(1 + 1/(3 + ...)))).
		

References

  • Oskar Perron, Die Lehre von den Kettenbrüchen, 2nd ed., Teubner, Leipzig, 1929, p. 138.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[ E^2, 100]
    LinearRecurrence[{0,0,0,0,2,0,0,0,0,-1},{7,2,1,1,3,18,5,1,1,6,30},80] (* Harvey P. Dale, Dec 30 2023 *)
  • PARI
    contfrac(exp(2))
    
  • PARI
    allocatemem(932245000); default(realprecision, 95000); x=contfrac(exp(2)); for (n=1, 20001, write("b001204.txt", n-1, " ", x[n])); \\ Harry J. Smith, Apr 30 2009

Formula

G.f.: (x^10 - x^8 - x^7 + x^6 + 4x^5 + 3x^4 + x^3 + x^2 + 2x + 7)/(x^5 - 1)^2. - Ralf Stephan, Mar 23 2003
For n > 0, a(5n) = 12n + 6, a(5n+1) = 3n + 2, a(5n+2) = a(5n+3) = 1 and a(5n+4) = 3n + 3. - Dean Hickerson, Mar 25 2003
Sum_{n>=5} (-1)^(n+1)/a(n) = (8*sqrt(3)-3)*Pi/72 - 2*log(2)/3. - Amiram Eldar, May 04 2025

Extensions

More terms from Robert G. Wilson v, Dec 07 2000

A133570 "Exact" continued fraction of e.

Original entry on oeis.org

3, -4, 2, 5, -2, -7, 2, 9, -2, -11, 2, 13, -2, -15, 2, 17, -2, -19, 2, 21, -2, -23, 2, 25, -2, -27, 2, 29, -2, -31, 2, 33, -2, -35, 2, 37, -2, -39, 2, 41, -2, -43, 2, 45, -2, -47, 2, 49, -2, -51, 2, 53, -2, -55, 2, 57, -2, -59, 2, 61, -2, -63, 2, 65, -2, -67, 2, 69, -2, -71, 2, 73, -2, -75, 2, 77, -2, -79, 2, 81, -2, -83, 2, 85, -2, -87, 2
Offset: 0

Views

Author

Serhat Sevki Dincer (jfcgauss(AT)gmail.com), Dec 30 2007

Keywords

Comments

See comments in A133593. Just as for the usual continued fraction for e, the exact continued fraction also has a simple pattern.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = Infinity; x[0] = E; a[n_] := a[n] = Round[Abs[x[n]]]*Sign[x[n]]; x[n_] := 1/(x[n - 1] - a[n - 1]); Table[a[n], {n, 0, 120}] (* Clark Kimberling, Sep 04 2013 *)
    Join[{3, -4}, LinearRecurrence[{0, -2, 0, -1}, {2, 5, -2, -7}, 100]] (* Vincenzo Librandi, Jan 09 2016 *)
  • PARI
    Vec(-(x^5-5*x^4+3*x^3-8*x^2+4*x-3)/(x^2+1)^2 + O(x^100)) \\ Colin Barker, Sep 13 2013

Formula

x(0) = e, a(n) = floor( |x(n)| + 0.5 ) * Sign(x(n)), x(n+1) = 1 / (x(n)-a(n)).
From Colin Barker, Sep 13 2013 and Jan 08 2016: (Start)
a(n) = 1/2*((2-i*2)*((-i)^n-i*i^n)+((-i)^n-i^n)*n)*(-1)*i for n>1.
a(n) = -2*a(n-2)-a(n-4) for n>5.
G.f.: -(x^5-5*x^4+3*x^3-8*x^2+4*x-3)/(x^2+1)^2.
(End)

A159825 Continued fraction for e^e^e A073227.

Original entry on oeis.org

3814279, 9, 1, 1, 4, 1, 53, 26, 1, 13, 3, 1, 1, 22, 1, 226, 1, 5, 2, 1, 6, 2, 3, 1, 4, 1, 6, 39, 2, 1, 3, 1, 5, 1, 4, 1, 3, 1, 4, 1, 1, 19, 1, 2, 8899, 5, 2, 2, 1, 3, 3, 2, 2, 2, 1, 1, 3, 5, 1, 6, 10, 2, 1, 2, 1, 1, 1, 2, 2, 4, 1, 10, 2, 6, 1, 5, 6, 2, 4, 2, 1, 2, 1, 1, 1, 3, 2, 2, 1, 1, 11, 7, 3, 1, 4, 4
Offset: 0

Views

Author

Harry J. Smith, Apr 30 2009

Keywords

Comments

It was conjectured (but remains unproved) that this sequence is infinite and aperiodic, but it is difficult to determine who first posed this problem. - Vladimir Reshetnikov, Apr 27 2013

Examples

			3814279.104760220592209... = 3814279 + 1/(9 + 1/(1 + 1/(1 + 1/(4 + ...)))).
		

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[E^E^E, 96] (* Vladimir Reshetnikov, Apr 27 2013 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(exp(exp(exp(1)))); for (n=1, 20001, write("b159825.txt", n-1, " ", x[n])); }
Showing 1-10 of 37 results. Next