cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A228826 Delayed continued fraction of sqrt(2).

Original entry on oeis.org

2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1
Offset: 0

Views

Author

Clark Kimberling, Sep 04 2013

Keywords

Comments

See A228825 for a definition of delayed continued fraction (DCF).
DCF(r) is periodic if and only if CF(r) is periodic; DCF(sqrt(n)) is shown here for selected values of n,using Mathematica notation for periodic continued fractions.
n ........ DCF(sqrt(n))
2 ........ {2, {-1,-2,1,2}}
3 ........ {{1,2,-1,-1,-2,1}}
5 ........ {3, {-2,2,-1,-2,2,-2,1,2}}
6 ........ {3, {-1,-2,2,-2,1,2}}
7 ........ {2, {1,1,2,-2,2,-1,-1,-1,-1,-2,2,-2,1,1}}
8 ........ {2, {2,-2,2,-1,-1,-2,2,-2,1,1}}
10........ {4, {-2,2,-2,2,-1,-2,2,-2,2,-2,1,2}}

Examples

			convergents: 2, 1, 4/3, 3/2, 10/7, 7/5, 24/17, 17/12, 58/41, 41/29, 140/99, ...
		

Crossrefs

Programs

  • Magma
    I:=[2,-1]; [n le 2 select I[n] else  - Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 19 2018
  • Mathematica
    $MaxExtraPrecision = Infinity; x[0] = Sqrt[2]; s[x_] := s[x] = If[FractionalPart[x] < 1/2, Ceiling[x], Floor[x]]; a[n_] := a[n] = s[Abs[x[n]]]*Sign[x[n]]; x[n_] := 1/(x[n - 1] - a[n - 1]); t = Table[a[n], {n, 0, 100}]
    LinearRecurrence[{0,-1}, {2,-1}, 50] (* G. C. Greubel, Aug 19 2018 *)
  • PARI
    Vec(-(x-2)/(x^2+1) + O(x^100)) \\ Colin Barker, Sep 13 2013
    

Formula

From Colin Barker, Sep 13 2013: (Start)
a(n) = ((2-i)*(-i)^n + (2+i)*i^n)/2 where i=sqrt(-1).
a(n) = -a(n-2).
G.f.: (2-x)/(x^2+1). (End)

A228825 Delayed continued fraction of e.

Original entry on oeis.org

2, 2, -1, -1, -1, -2, 2, -2, 1, 1, 1, 2, -2, 2, -2, 2, -1, -1, -1, -2, 2, -2, 2, -2, 2, -2, 1, 1, 1, 2, -2, 2, -2, 2, -2, 2, -2, 2, -1, -1, -1, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 1, 1, 1, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -1, -1, -1, -2, 2, -2
Offset: 0

Views

Author

Clark Kimberling, Sep 04 2013

Keywords

Comments

An algorithm for the (usual) continued fraction of r > 0 follows: x(0) = r, a(n) = floor(x(n)), x(n+1) = 1/(x(n) - a(n)).
The accelerated continued fraction uses "round" instead of "floor" (cf. A133593, A133570, A228667), where round(x) is the integer nearest x.
The delayed continued fraction (DCF) uses "second nearest integer", so that all the terms are in {-2, -1, 1, 2}. If s/t and u/v are consecutive convergents of a DCF, then |s*x-u*t| = 1.
Regarding DCF(e), after the initial (2,2), the strings (-1,-1,-1) and (1,1,1) alternate with odd-length strings of the forms (-2,2,...,-2) and (2,-2,...,2). The string lengths form the sequence 2,3,3,3,5,3,7,3,9,3,11,3,13,3,...
Comparison of convergence rates is indicated by the following approximate values of x-e, where x is the 20th convergent: for delayed CF, x-e = 5.4x10^-7; for classical CF, x-e = 6.1x10^-16; for accelerated CF, x-e = -6.6x10^-27. The convergents for accelerated CF are a proper subset of those for classical CF, which are a proper subset of those for delayed CF (which are sampled in Example).

Examples

			Convergents: 2, 5/2, 3, 8/3, 11/4, 30/11, 49/18, 68/25, 19/7, 87/32, 106/39, 299/110, 492/181,...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = Infinity; x[0] = E; s[x_] := s[x] = If[FractionalPart[x] < 1/2, Ceiling[x], Floor[x]]; a[n_] := a[n] = s[Abs[x[n]]]*Sign[x[n]]; x[n_] := 1/(x[n - 1] - a[n - 1]); t = Table[a[n], {n, 0, 100}]

A228936 Expansion of (1 + 3*x - 3*x^3 - x^4)/(1 + 2*x^2 + x^4).

Original entry on oeis.org

1, 3, -2, -9, 2, 15, -2, -21, 2, 27, -2, -33, 2, 39, -2, -45, 2, 51, -2, -57, 2, 63, -2, -69, 2, 75, -2, -81, 2, 87, -2, -93, 2, 99, -2, -105, 2, 111, -2, -117, 2, 123, -2, -129, 2, 135, -2, -141, 2, 147
Offset: 0

Views

Author

Giovanni Artico, Oct 26 2013

Keywords

Comments

Optimal simple continued fraction (with signed denominators) of exp(1/3). See A228935.
The convergents are a subset of those of the standard regular continued fraction; the sequence of the signs of the difference between the convergents and exp(1/3) starts with: -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, ...
For every couple of successive equal signs in this sequence there is a convergent of the standard expansion not present in this one.
Repeating the expansion for other numbers of type 1/k a common pattern seems to emerge. Examples:
exp(1/4) gives 1, 4, -2, -12, 2, 20, -2, -28, 2, 36, -2, -44, 2, 52, ...
exp(1/5) gives 1, 5, -2, -15, 2, 25, -2, -35, 2, 45, -2, -55, 2, 65, ...
so it seems that in general the terms for exp(1/k) are generated by the formulas a(0)=1, a(2n+1) = (-1)^n*k*(2n+1) for n >= 0, a(2n) = (-1)^n*2 for n > 0. These formulas give this expansion for exp(1/k):
exp(1/k) = 1+1/(k+1/(-2+1/(-3k+1/(2+1/(5k+1/(-2+1/(-7k+1/(2+...)))))))).
which can be rewritten in this equivalent form:
exp(1/k) = 1+1/(k-1/(2+1/(3k-1/(2+1/(5k-1/(2+1/(7k-1/(2+...)))))))).
This general expansion seems to be valid for any real value of k.
Closed form for the general case exp(1/k): b(n) = (1+(-1)^n-(1-(-1)^n)*k*n/2)*i^(n*(n+1)) for n>0 and with i=sqrt(-1). [Bruno Berselli, Nov 01 2013]

Examples

			exp(1/3) = 1+1/(3+1/(-2+1/(-9+1/(2+1/(15+1/(-2+1/(-21+1/(2+...)))))))) or
exp(1/3) = 1+1/(3-1/(2+1/(9-1/(2+1/(15-1/(2+1/(21-1/(2+...))))))))
		

Crossrefs

Programs

  • Maple
    SCF := proc (n, q::posint)::list; local L, i, z; Digits := 10000; L := [round(n)]; z := n; for i from 2 to q do if z = op(-1, L) then break end if; z := 1/(z-op(-1, L)); L := [op(L), round(z)] end do; return L end proc
    SCF(exp(1/3), 50)  # Giovanni Artico, Oct 26 2013
  • PARI
    Vec(-(x-1)*(x+1)*(x^2+3*x+1)/(x^2+1)^2+O(x^100)) \\ Colin Barker, Oct 26 2013

Formula

This sequence can be generated by these formulas:
a(0)=1; for n >= 0, a(2n+1) = 3*(-1)^n*(2n+1), a(2n) = 2*(-1)^n for n > 0.
Formulae for the general case exp(1/k):
b(0)=1; for n >= 0, b(2n+1) = (-1)^n*k*(2n+1), b(2n) = 2*(-1)^n.
b(n) = 2*cos(n*Pi/2) + k*n*sin(n*Pi/2) for n > 0.
exp(1/k) = 1+1/(k-1/(2+1/(3k-1/(2+1/(5k-1/(2+1/(7k-1/(2+...)))))))).
G.f.: (1-x)*(1+x)*(1+k*x+x^2)/(1+x^2)^2.
From Colin Barker, Oct 26 2013: (Start)
a(n) = (-i)^n + i^n + (1/2)*(((-i)^n-i^n)*n)*(3*i) for n > 0, where i=sqrt(-1).
a(2n) = 2*(3*n*sin(Pi*n) + cos(Pi*n)) for n > 0.
a(2n+1) = (6*n+3)*cos(Pi*n) - 2*sin(Pi*n) for n >= 0.
a(n) = -2*a(n-2) - a(n-4) for n > 4.
G.f.: -(x-1)*(x+1)*(x^2+3*x+1) / (x^2+1)^2. (End)

A280136 Negative continued fraction of e (or negative continued fraction expansion of e).

Original entry on oeis.org

3, 4, 3, 2, 2, 2, 3, 8, 3, 2, 2, 2, 2, 2, 2, 2, 3, 12, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 16, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 20, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 24, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Randy L. Ekl, Dec 26 2016

Keywords

Comments

After the first term (3), a pattern of groups consisting, for m>=1, of the number 4m, followed by 3, then 4m-1 2's, then 3.

Examples

			e = 2.71828... = 3 - 1/(4 - 1/(3 - 1/(...))).
		

References

  • Leonard Eugene Dickson, History of the Theory of Numbers, page 379.

Crossrefs

Cf. A003417 (continued fraction of e).
Cf. A005131 (generalized continued fraction of e).
Cf. A133570 (exact continued fraction of e).
Cf. A228825 (delayed continued fraction of e).
Cf. A280135 (negative continued fraction of Pi).

Programs

  • PARI
    \p10000; p=exp(1.0); for(i=1, 300, print(i, " ", ceil(p)); p=ceil(p)-p; p=1/p )

Extensions

More terms from Jinyuan Wang, Mar 04 2020

A228937 Expansion of (1+2*x+30*x^2+13*x^3-13*x^5-30*x^6-2*x^7-x^8)/(1+2*x^4+x^8).

Original entry on oeis.org

1, 2, 30, 13, -2, -17, -90, -28, 2, 32, 150, 43, -2, -47, -210, -58, 2, 62, 270, 73, -2, -77, -330, -88, 2, 92, 390, 103, -2, -107, -450, -118, 2, 122, 510, 133, -2, -137, -570, -148, 2, 152, 630, 163, -2, -167, -690, -178, 2, 182
Offset: 0

Views

Author

Giovanni Artico, Oct 28 2013

Keywords

Comments

Optimal simple continued fraction (with signed denominators) of exp(2/5)
See A228935.
The convergents are a subset of those of the standard regular continued fraction; the sequence of the signs of the difference between the convergents and exp(2/5) starts with:
-1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1,...
For every couple of successive equal signs in this sequence there is a convergent of the standard expansion not present in this one.
Repeating the expansion for other numbers of type 2/k a common pattern seems to emerge. Examples:
exp(2/7) gives 1, 3, 42, 18, -2, -24, -126, -39, 2, 45, 210, 60, -2,...
exp(2/9) gives 1, 4, 54, 23, -2, -31, -162, -50, 2, 58, 270, 77, -2,...
so it seems that in general the terms for exp(2/k) are generated by the following formulas:
b(0)=1, b(1)=k/2-1/2, b(2)=6*k, b(3)=5*k/2+1/2, b(4)=-2, b(5)=7*k/2+1/2, b(6)=-18*k, b(7)=-11*k/2-1/2, b(8)=2; b(n) = -2*b(n-4) -b(n-8) for n>8, recurrence which corresponds to the g.f. 1/2*(1-x)*(1+x)*(2*(1+x^6)+(k-1)*(x+x^5)+(12*k+2)*(x^2+x^4)+6*k*x^3)/(1+x^4)^2; also:
b(0)=1 , b(4m+1)=(-1)^m*((k-1)/2+3*k*m), b(4m+3)=(-1)^m*((5*k+1)/2+3*k*m), b(4m+2)=(-1)^m*(6*k+12*k*m), b(4m+4)=(-1)^(m+1)*2 for n>=0.
These formulas give this expansion for exp(2/k):
exp(2/k)=1+1/((k-1)/2+1/(6k+1/((5k+1)/2+1/(-2+1/(-(7k-1)/2+1/...)))))
that can be rewritten in this equivalent form:
exp(2/k)=1+1/(k/2-1/2+1/(6k+1/(5k/2+1/2-1/(2+1/(7x/2-1/2+1/...))))).
This general expansion seems to be valid for any real value of k.

Examples

			exp(2/5)=1+1/(2+1/(30+1/(13+1/(-2+1/(-17+1/(-90+1/(-28+1/(2+...)))))))),
or equivalently:
exp(2/5)=1+1/(2+1/(30+1/(13-1/(2+1/(17+1/(90+1/(28-1/(2+...)))))))).
		

Crossrefs

Programs

  • Maple
    SCF := proc (n, q::posint)::list; local L, i, z; Digits := 10000; L := [round(n)]; z := n; for i from 2 to q do if z = op(-1, L) then break end if; z := 1/(z-op(-1, L)); L := [op(L), round(z)] end do; return L end proc
    SCF(exp(2/5), 50)
  • Mathematica
    Join[{1}, LinearRecurrence[{0, 0, 0, -2, 0, 0, 0, -1}, {2, 30, 13, -2, -17, -90, -28, 2}, 50]] (* Bruno Berselli, Nov 06 2013 *)

Formula

G.f.: (1+2*x+30*x^2+13*x^3-13*x^5-30*x^6-2*x^7-x^8)/(1+2*x^4+x^8).
a(0)=1, a(1)=2, a(2)=30, a(3)=13, a(4)=-2, a(5)=-17, a(6)=-90, a(7)=-28, a(8)=2; for n>8, a(n) = -2*a(n-4) -a(n-8).
a(0)=1 , a(4m+1) = (-1)^m*(2+15*m), a(4m+3) = (-1)^m*(13+15*m), a(4m+2) = (-1)^m*(30+60*m), a(4m+4) = 2*(-1)^(m+1) for m>=0.
Showing 1-5 of 5 results.