A228826 Delayed continued fraction of sqrt(2).
2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1
Offset: 0
Examples
convergents: 2, 1, 4/3, 3/2, 10/7, 7/5, 24/17, 17/12, 58/41, 41/29, 140/99, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,-1).
Programs
-
Magma
I:=[2,-1]; [n le 2 select I[n] else - Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 19 2018
-
Mathematica
$MaxExtraPrecision = Infinity; x[0] = Sqrt[2]; s[x_] := s[x] = If[FractionalPart[x] < 1/2, Ceiling[x], Floor[x]]; a[n_] := a[n] = s[Abs[x[n]]]*Sign[x[n]]; x[n_] := 1/(x[n - 1] - a[n - 1]); t = Table[a[n], {n, 0, 100}] LinearRecurrence[{0,-1}, {2,-1}, 50] (* G. C. Greubel, Aug 19 2018 *)
-
PARI
Vec(-(x-2)/(x^2+1) + O(x^100)) \\ Colin Barker, Sep 13 2013
Formula
From Colin Barker, Sep 13 2013: (Start)
a(n) = ((2-i)*(-i)^n + (2+i)*i^n)/2 where i=sqrt(-1).
a(n) = -a(n-2).
G.f.: (2-x)/(x^2+1). (End)
Comments