cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A301287 Coordination sequence for node of type 3.12.12 in "cph" 2-D tiling (or net).

Original entry on oeis.org

1, 3, 6, 7, 8, 15, 18, 17, 20, 25, 28, 29, 30, 35, 40, 39, 40, 47, 50, 49, 52, 57, 60, 61, 62, 67, 72, 71, 72, 79, 82, 81, 84, 89, 92, 93, 94, 99, 104, 103, 104, 111, 114, 113, 116, 121, 124, 125, 126, 131, 136, 135, 136, 143, 146, 145, 148, 153, 156, 157, 158
Offset: 0

Views

Author

N. J. A. Sloane, Mar 23 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 31 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, bottom row, first tiling.

Crossrefs

Cf. A301289.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    Join[{1, 3, 6}, LinearRecurrence[{1, -1, 2, -1, 1, -1}, {7, 8, 15, 18, 17, 20}, 100]] (* Jean-François Alcover, Aug 05 2018 *)
  • PARI
    See Links section.

Formula

G.f. = -(2*x^8-2*x^7-x^6-4*x^5-2*x^4-2*x^3-4*x^2-2*x-1) / ((x^2+1)*(x^2+x+1)*(x-1)^2). N. J. A. Sloane, Mar 28 2018 (This is now a theorem. - N. J. A. Sloane, Apr 05 2018)
Equivalent conjecture: 3*a(n) = 8*n+2*A057078(n+1)+3*A228826(n+2). - R. J. Mathar, Mar 31 2018 (This is now a theorem. - N. J. A. Sloane, Apr 05 2018)
Theorem: G.f. = (1+2*x+4*x^2+2*x^3+2*x^4+4*x^5+1*x^6+2*x^7-2*x^8) / ((1-x)*(1+x^2)*(1-x^3)).
Proof. This follows by applying the coloring book method described in the Goodman-Strauss & Sloane article. The trunks and branches structure is shown in the links, and the details of the proof (by calculating the generating function) are on the next two scanned pages. - N. J. A. Sloane, Apr 05 2018

Extensions

More terms from Rémy Sigrist, Mar 27 2018

A228825 Delayed continued fraction of e.

Original entry on oeis.org

2, 2, -1, -1, -1, -2, 2, -2, 1, 1, 1, 2, -2, 2, -2, 2, -1, -1, -1, -2, 2, -2, 2, -2, 2, -2, 1, 1, 1, 2, -2, 2, -2, 2, -2, 2, -2, 2, -1, -1, -1, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 1, 1, 1, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -1, -1, -1, -2, 2, -2
Offset: 0

Views

Author

Clark Kimberling, Sep 04 2013

Keywords

Comments

An algorithm for the (usual) continued fraction of r > 0 follows: x(0) = r, a(n) = floor(x(n)), x(n+1) = 1/(x(n) - a(n)).
The accelerated continued fraction uses "round" instead of "floor" (cf. A133593, A133570, A228667), where round(x) is the integer nearest x.
The delayed continued fraction (DCF) uses "second nearest integer", so that all the terms are in {-2, -1, 1, 2}. If s/t and u/v are consecutive convergents of a DCF, then |s*x-u*t| = 1.
Regarding DCF(e), after the initial (2,2), the strings (-1,-1,-1) and (1,1,1) alternate with odd-length strings of the forms (-2,2,...,-2) and (2,-2,...,2). The string lengths form the sequence 2,3,3,3,5,3,7,3,9,3,11,3,13,3,...
Comparison of convergence rates is indicated by the following approximate values of x-e, where x is the 20th convergent: for delayed CF, x-e = 5.4x10^-7; for classical CF, x-e = 6.1x10^-16; for accelerated CF, x-e = -6.6x10^-27. The convergents for accelerated CF are a proper subset of those for classical CF, which are a proper subset of those for delayed CF (which are sampled in Example).

Examples

			Convergents: 2, 5/2, 3, 8/3, 11/4, 30/11, 49/18, 68/25, 19/7, 87/32, 106/39, 299/110, 492/181,...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = Infinity; x[0] = E; s[x_] := s[x] = If[FractionalPart[x] < 1/2, Ceiling[x], Floor[x]]; a[n_] := a[n] = s[Abs[x[n]]]*Sign[x[n]]; x[n_] := 1/(x[n - 1] - a[n - 1]); t = Table[a[n], {n, 0, 100}]

A264018 Number of (2+1) X (n+1) arrays of permutations of 0..n*3+2 with each element having index change +-(.,.) 0,0 1,2 or 2,2.

Original entry on oeis.org

1, 5, 25, 105, 441, 1869, 7921, 33553, 142129, 602069, 2550409, 10803705, 45765225, 193864605, 821223649, 3478759201, 14736260449, 62423800997, 264431464441, 1120149658761, 4745030099481, 20100270056685, 85146110326225
Offset: 1

Views

Author

R. H. Hardin, Nov 01 2015

Keywords

Examples

			Some solutions for n=4:
..7..1..2..3..4....0.13..9..3..4....0..8..9..3..4....7..1..9..3..4
.12..6..0..8..9...12..6..7..8..2...12..6.14..1..2...12.13..0..8..2
.10.11..5.13.14...10.11..5..1.14...10.11..5.13..7...10.11..5..6.14
		

Crossrefs

Row 2 of A264017.

Formula

Empirical: a(n) = 4*a(n-1) + 4*a(n-3) + a(n-4).
Empirical g.f.: x*(1 + x + 5*x^2 + x^3) / ((1 + x^2)*(1 - 4*x - x^2)). - Colin Barker, Jan 03 2019
Empirical: 5*a(n) = 2*A228826(n) + A048876(n). - R. J. Mathar, Sep 09 2020

A322171 Expansion of x*(3 + 5*x + x^2 + x^3)/((1 - x)^2*(1 + x^2)).

Original entry on oeis.org

3, 11, 17, 19, 23, 31, 37, 39, 43, 51, 57, 59, 63, 71, 77, 79, 83, 91, 97, 99, 103, 111, 117, 119, 123, 131, 137, 139, 143, 151, 157, 159, 163, 171, 177, 179, 183, 191, 197, 199, 203, 211, 217, 219, 223, 231, 237, 239, 243, 251, 257, 259, 263, 271, 277, 279, 283, 291, 297, 299
Offset: 1

Views

Author

Mark A. Thomas, Nov 29 2018

Keywords

Crossrefs

Cf. A228826.

Programs

  • Magma
    I:=[3,11,17,19]; [n le 4 select I[n] else 2*Self(n-1)-2*Self(n-2)+2*Self(n-3)-Self(n-4): n in [1..60]]; // Vincenzo Librandi, Dec 06 2018
  • Maple
    seq(coeff(series(x*(x^3+x^2+5*x+3)/((1-x)^2*(1+x^2)),x,n+1), x, n), n = 1 .. 60); # Muniru A Asiru, Dec 06 2018
  • Mathematica
    CoefficientList[Series[(x^3 + x^2 + 5 x + 3)/((x - 1)^2 (x^2 + 1)), {x, 0, 50}], x] (* or *)
    a[n_]:= (1/2) (10 n - (1 + 2 * I) (-I)^n - (1 - 2 I) I^n); Simplify[Array[a, 50]] (* Stefano Spezia, Nov 29 2018 *)
    LinearRecurrence[{2, -2, 2, -1}, {3, 11, 17, 19}, 60] (* Vincenzo Librandi, Dec 06 2018 *)
  • PARI
    Vec((3 + 5*x + x^2 + x^3)/((1 - x)^2*(1 + x^2)) + O(x^60)) \\ Andrew Howroyd, Nov 29 2018
    

Formula

a(n) = (1/2)*(10*n - (1+2*i)*(-i)^n - (1-2*i)*i^n), where i = sqrt(-1).
a(n) = 5*n - 2*sin(Pi*n/2) - cos(Pi*n/2).
a(n) = 5*n - A228826(n-1). - Andrew Howroyd, Nov 29 2018
G.f.: x*(x^3 + x^2 + 5*x + 3) / ((x - 1)^2 *(x^2 + 1)). - Vincenzo Librandi, Dec 06 2018

A356050 a(n) = 2*A135318(n+1) - A135318(n).

Original entry on oeis.org

1, 1, 3, 4, 5, 6, 11, 14, 21, 26, 43, 54, 85, 106, 171, 214, 341, 426, 683, 854, 1365, 1706, 2731, 3414, 5461, 6826, 10923, 13654, 21845, 27306, 43691, 54614, 87381, 109226, 174763, 218454, 349525, 436906, 699051, 873814, 1398101, 1747626, 2796203, 3495254, 5592405
Offset: 0

Views

Author

Paul Curtz, Aug 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 1, 0, 2}, {1, 1, 3, 4}, 50] (* Amiram Eldar, Aug 19 2022 *)

Formula

a(n) = A135318(n) + A230096(n+1).
a(n) = a(n-8) + 5*A094958(n-5).
a(2*n) = A001045(n+2).
a(2*n+1) = A084214(n+1).
From Stefano Spezia, Aug 20 2022: (Start)
O.g.f.: (1 + x + 2*x^2 + 3*x^3)/((1 + x^2)*(1 - 2*x^2)).
E.g.f.: (8*cosh(sqrt(2)*x) - 2*cos(x) + 5*sqrt(2)*sinh(sqrt(2)*x) - 4*sin(x))/6. (End)
3*a(n) = A228826(n+1) +A094958(n+3). - R. J. Mathar, Jan 25 2023
Showing 1-5 of 5 results.