cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001206 Number of self-dual monotone Boolean functions of n variables.

Original entry on oeis.org

0, 1, 2, 4, 12, 81, 2646, 1422564, 229809982112, 423295099074735261880
Offset: 0

Views

Author

Keywords

Comments

Sometimes called Hosten-Morris numbers (or HM numbers).
Also the number of simplicial complexes on the set {1, ..., n-1} such that no pair of faces covers all of {1, ..., n-1}. [Miller-Sturmfels] - N. J. A. Sloane, Feb 18 2008
Also the maximal number of generators of a neighborly monomial ideal in n variables. [Miller-Sturmfels]. - N. J. A. Sloane, Feb 18 2008
Also the number of intersecting antichains on a labeled (n-1)-set or (n-1)-variable Boolean functions in the Post class F(7,2). Cf. A059090. - Vladeta Jovovic, Goran Kilibarda, Dec 28 2000
Also the number of nondominated coteries on n members. - Don Knuth, Sep 01 2005
The number of maximal families of intersecting subsets of an n-element set. - Bridget Tenner, Nov 16 2006
Rivière gives a(n) for n <= 5. - N. J. A. Sloane, May 12 2012

Examples

			a(2) = 1 + 1 = 2;
a(3) = 1 + 3 = 4;
a(4) = 1 + 7 + 3 + 1 = 12;
a(5) = 1 + 15 + 30 + 30 + 5 = 81;
a(6) = 1 + 31 + 195 + 605 + 780 + 543 + 300 + 135 + 45 + 10 + 1 = 2646;
a(7) = 1 + 63 + 1050 + 9030 + 41545 + 118629 + 233821 + 329205 + 327915 + 224280 + 100716 + 29337 + 5950 + 910 + 105 + 1 = 1422564.
Cf. A059090.
From _Gus Wiseman_, Jul 03 2019: (Start)
The a(1) = 1 through a(4) = 12 intersecting antichains of nonempty sets (see Jovovic and Kilibarda's comment):
  {}  {}     {}       {}
      {{1}}  {{1}}    {{1}}
             {{2}}    {{2}}
             {{1,2}}  {{3}}
                      {{1,2}}
                      {{1,3}}
                      {{2,3}}
                      {{1,2,3}}
                      {{1,2},{1,3}}
                      {{1,2},{2,3}}
                      {{1,3},{2,3}}
                      {{1,2},{1,3},{2,3}}
(End)
		

References

  • Martin Aigner and Günter M. Ziegler, Proofs from THE BOOK, Third Edition, Springer-Verlag, 2004. See chapter 22.
  • V. Jovovic and G. Kilibarda, The number of n-variable Boolean functions in the Post class F(7,2), Belgrade, 2001, in preparation.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
  • W. F. Lunnon, The IU function: the size of a free distributive lattice, pp. 173-181 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.
  • Charles F. Mills and W. M. Mills, The calculation of λ(8), preprint, 1979. Gives a(8).
  • E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Springer, 2005.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The case with empty edges allowed is A326372.
The maximal case is A007363, or A326363 with empty edges allowed.
The case with empty intersection is A326366.
The inverse binomial transform is the covering case A305844.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&]],{n,0,5}] (* Gus Wiseman, Jul 03 2019 *)

Formula

a(n+1) = Sum_{m=0..A037952(n)} A059090(n, m).
For n > 0, a(n) = A326372(n - 1) - 1. - Gus Wiseman, Jul 03 2019

Extensions

a(8) due to C. F. Mills & W. H. Mills, 1979
a(8) from Daniel E. Loeb, Jan 04 1996
a(8) confirmed by Don Knuth, Feb 08 2008
a(9) from Andries E. Brouwer, Aug 25 2012