cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A001087 Related to S(n), the number of self-dual monotone Boolean functions of n variables (A001206): 2^n-th term is S(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 11, 12, 13, 18, 26, 31, 49, 62, 80, 81, 82, 101, 126, 167, 215, 295, 417, 436, 602, 887, 1371, 1454, 2332, 2479, 2645, 2646
Offset: 1

Views

Author

M. Roller [ Martin.Roller(AT)mathematik.uni-regensburg.de ]

Keywords

Comments

This sequence needs a definition!

A003182 Dedekind numbers: inequivalent monotone Boolean functions of n or fewer variables, or antichains of subsets of an n-set.

Original entry on oeis.org

2, 3, 5, 10, 30, 210, 16353, 490013148, 1392195548889993358, 789204635842035040527740846300252680
Offset: 0

Views

Author

Keywords

Comments

NP-equivalence classes of unate Boolean functions of n or fewer variables.
Also the number of simple games with n players in minimal winning form up to isomorphism. - Fabián Riquelme, Mar 13 2018
The labeled case is A000372. - Gus Wiseman, Feb 23 2019
First differs from A348260(n + 1) at a(5) = 210, A348260(6) = 233. - Gus Wiseman, Nov 28 2021
Pawelski & Szepietowski show that a(n) = A001206(n) (mod 2) and that a(9) = 6 (mod 210). - Charles R Greathouse IV, Feb 16 2023

Examples

			From _Gus Wiseman_, Feb 20 2019: (Start)
Non-isomorphic representatives of the a(0) = 2 through a(3) = 10 antichains:
  {}    {}     {}         {}
  {{}}  {{}}   {{}}       {{}}
        {{1}}  {{1}}      {{1}}
               {{1,2}}    {{1,2}}
               {{1},{2}}  {{1},{2}}
                          {{1,2,3}}
                          {{1},{2,3}}
                          {{1},{2},{3}}
                          {{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
(End)
		

References

  • I. Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987, p. 38.
  • Arocha, Jorge Luis (1987) "Antichains in ordered sets" [ In Spanish ]. Anales del Instituto de Matematicas de la Universidad Nacional Autonoma de Mexico 27: 1-21.
  • J. Berman, Free spectra of 3-element algebras, in R. S. Freese and O. C. Garcia, editors, Universal Algebra and Lattice Theory (Puebla, 1982), Lect. Notes Math. Vol. 1004, 1983.
  • G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967, p. 63.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 273.
  • M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 188.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
  • W. F. Lunnon, The IU function: the size of a free distributive lattice, pp. 173-181 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.
  • Saburo Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 13.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. H. Wiedemann, personal communication.

Crossrefs

Formula

a(n) = A306505(n) + 1. - Gus Wiseman, Jul 02 2019

Extensions

a(7) added by Timothy Yusun, Sep 27 2012
a(8) from Pawelski added by Michel Marcus, Sep 01 2021
a(9) from Pawelski added by Michel Marcus, May 11 2023

A305843 Number of labeled spanning intersecting set-systems on n vertices.

Original entry on oeis.org

1, 1, 3, 27, 1245, 1308285, 912811093455, 291201248260060977862887, 14704022144627161780742038728709819246535634969, 12553242487940503914363982718112298267975272588471811456164576678961759219689708372356843289
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2018

Keywords

Comments

An intersecting set-system S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection. S is spanning if every vertex is contained in some edge.

Examples

			The a(3) = 27 spanning intersecting set-systems:
{{1,2,3}}
{{1},{1,2,3}}
{{2},{1,2,3}}
{{3},{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,2},{1,2,3}}
{{1,3},{2,3}}
{{1,3},{1,2,3}}
{{2,3},{1,2,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
{{2},{1,2},{2,3}}
{{2},{1,2},{1,2,3}}
{{2},{2,3},{1,2,3}}
{{3},{1,3},{2,3}}
{{3},{1,3},{1,2,3}}
{{3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
{{1,2},{2,3},{1,2,3}}
{{1,3},{2,3},{1,2,3}}
{{1},{1,2},{1,3},{1,2,3}}
{{2},{1,2},{2,3},{1,2,3}}
{{3},{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    Length/@Table[Select[Subsets[Rest[Subsets[Range[n]]]],And[Union@@#==Range[n],FreeQ[Intersection@@@Tuples[#,2],{}]]&],{n,1,4}]

Formula

Inverse binomial transform of A051185.

A305854 Number of unlabeled spanning intersecting set-systems on n vertices.

Original entry on oeis.org

1, 1, 2, 10, 110, 14868, 1289830592
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2018

Keywords

Comments

An intersecting set-system S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection. S is spanning if every vertex is contained in some edge.

Examples

			Non-isomorphic representatives of the a(3) = 10 spanning intersecting set-systems:
  {{1,2,3}}
  {{3},{1,2,3}}
  {{1,3},{2,3}}
  {{2,3},{1,2,3}}
  {{3},{1,3},{2,3}}
  {{3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,3},{2,3},{1,2,3}}
  {{3},{1,3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Formula

a(n) = A305856(n) - A305856(n-1) for n > 0. - Andrew Howroyd, Aug 12 2019

Extensions

a(5) from Andrew Howroyd, Aug 12 2019
a(6) from Bert Dobbelaere, Apr 28 2025

A305844 Number of labeled spanning intersecting antichains on n vertices.

Original entry on oeis.org

1, 1, 1, 5, 50, 2330, 1407712, 229800077244, 423295097236295093695
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2018

Keywords

Comments

An intersecting antichain S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection, and none of which is a subset of any other. S is spanning if every vertex is contained in some edge.

Examples

			The a(3) = 5 spanning intersecting antichains:
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    Length/@Table[Select[Subsets[Rest[Subsets[Range[n]]]],And[Union@@#==Range[n],FreeQ[Intersection@@@Tuples[#,2],{},{1}],Select[Tuples[#,2],UnsameQ@@#&&Complement@@#=={}&]=={}]&],{n,1,4}]

Formula

Inverse binomial transform of A001206(n + 1).

A305857 Number of unlabeled intersecting antichains on up to n vertices.

Original entry on oeis.org

1, 2, 3, 6, 15, 87, 3528, 47174113
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2018

Keywords

Comments

An intersecting antichain S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection, and none of which is a subset of any other.

Examples

			Non-isomorphic representatives of the a(4) = 15 intersecting antichains:
  {}
  {{1}}
  {{1,2}}
  {{1,2,3}}
  {{1,2,3,4}}
  {{1,3},{2,3}}
  {{1,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,3}}
  {{1,4},{2,4},{3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Formula

a(n) = A305855(0) + A305855(1) + ... + A305855(n). - Brendan McKay, May 11 2020

Extensions

a(6) from Andrew Howroyd, Aug 13 2019
a(7) from Brendan McKay, May 11 2020

A007363 Maximal self-dual antichains on n points.

Original entry on oeis.org

0, 1, 3, 5, 20, 168, 11748, 12160647
Offset: 1

Views

Author

Keywords

Comments

From Gus Wiseman, Jul 02 2019: (Start)
If self-dual means (pairwise) intersecting, then a(n) is the number of maximal intersecting antichains of nonempty subsets of {1..(n - 1)}. A set of sets is an antichain if no part is a subset of any other, and is intersecting if no two parts are disjoint. For example, the a(2) = 1 through a(5) = 20 maximal intersecting antichains are:
{1} {1} {1} {1}
{2} {2} {2}
{12} {3} {3}
{123} {4}
{12}{13}{23} {1234}
{12}{13}{23}
{12}{14}{24}
{13}{14}{34}
{23}{24}{34}
{12}{134}{234}
{13}{124}{234}
{14}{123}{234}
{23}{124}{134}
{24}{123}{134}
{34}{123}{124}
{12}{13}{14}{234}
{12}{23}{24}{134}
{13}{23}{34}{124}
{14}{24}{34}{123}
{123}{124}{134}{234}
(End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Intersecting antichains are A326372.
Intersecting antichains of nonempty sets are A001206.
Unlabeled intersecting antichains are A305857.
Maximal antichains of nonempty sets are A326359.
The case with empty edges allowed is A326363.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&]]],{n,0,5}] (* Gus Wiseman, Jul 02 2019 *)
    (* 2nd program *)
    n = 2^6; g = CompleteGraph[n]; i = 0;
    While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]];
    sets = FindClique[g, Infinity, All];
    Length[sets]-1 (* Elijah Beregovsky, May 06 2020 *)

Formula

For n > 0, a(n) = A326363(n - 1) - 1 = A326362(n - 1) + n - 1. - Gus Wiseman, Jul 03 2019

Extensions

a(8) from Elijah Beregovsky, May 06 2020

A305999 Number of unlabeled spanning intersecting set-systems on n vertices with no singletons.

Original entry on oeis.org

1, 0, 1, 6, 76, 12916
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2018

Keywords

Comments

An intersecting set-system S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection. S is spanning if every vertex is contained in some edge. A singleton is an edge containing only one vertex.

Examples

			Non-isomorphic representative of the a(3) = 6 set-systems:
{{1,2,3}}
{{1,3},{2,3}}
{{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Formula

a(n) = A306001(n) - A306001(n-1) for n > 0. - Andrew Howroyd, Aug 12 2019

Extensions

a(5) from Andrew Howroyd, Aug 12 2019

A326366 Number of intersecting antichains of nonempty subsets of {1..n} with empty intersection (meaning there is no vertex in common to all the edges).

Original entry on oeis.org

1, 1, 1, 2, 28, 1960, 1379273, 229755337549, 423295079757497714059
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no edge is a subset of any other, and is intersecting if no two edges are disjoint.

Examples

			The a(0) = 1 through a(4) = 28 intersecting antichains with empty intersection:
  {}  {}  {}  {}              {}
              {{12}{13}{23}}  {{12}{13}{23}}
                              {{12}{14}{24}}
                              {{13}{14}{34}}
                              {{23}{24}{34}}
                              {{12}{13}{234}}
                              {{12}{14}{234}}
                              {{12}{23}{134}}
                              {{12}{24}{134}}
                              {{13}{14}{234}}
                              {{13}{23}{124}}
                              {{13}{34}{124}}
                              {{14}{24}{123}}
                              {{14}{34}{123}}
                              {{23}{24}{134}}
                              {{23}{34}{124}}
                              {{24}{34}{123}}
                              {{12}{134}{234}}
                              {{13}{124}{234}}
                              {{14}{123}{234}}
                              {{23}{124}{134}}
                              {{24}{123}{134}}
                              {{34}{123}{124}}
                              {{12}{13}{14}{234}}
                              {{12}{23}{24}{134}}
                              {{13}{23}{34}{124}}
                              {{14}{24}{34}{123}}
                              {{123}{124}{134}{234}}
		

Crossrefs

The case with empty edges allowed is A326375.
Intersecting antichains of nonempty sets are A001206.
Intersecting set systems with empty intersection are A326373.
Antichains of nonempty sets with empty intersection are A006126 or A307249.
The inverse binomial transform is the covering case A326365.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&],#=={}||Intersection@@#=={}&]],{n,0,4}]

Formula

a(n) = A326375(n) - 1.
a(n) = A001206(n+1) + A307249(n) - A014466(n). - Andrew Howroyd, Aug 14 2019

Extensions

a(7)-a(8) from Andrew Howroyd, Aug 14 2019

A007007 Valence of graph of maximal intersecting families of sets.

Original entry on oeis.org

0, 1, 3, 4, 10, 15, 35, 56, 126, 210, 462, 792, 1716, 3003, 6435, 11440, 24310, 43758, 92378, 167960, 352716, 646646, 1352078, 2496144, 5200300, 9657700, 20058300, 37442160, 77558760, 145422675, 300540195, 565722720, 1166803110, 2203961430
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

Equals A037952 except for n=1 [Loeb & Meyerowitz, theorem 16]. - Andrey Zabolotskiy, Sep 19 2017

Extensions

More terms from Andrey Zabolotskiy, Sep 19 2017
Showing 1-10 of 25 results. Next