A001249 Squares of tetrahedral numbers: a(n) = binomial(n+3,n)^2.
1, 16, 100, 400, 1225, 3136, 7056, 14400, 27225, 48400, 81796, 132496, 207025, 313600, 462400, 665856, 938961, 1299600, 1768900, 2371600, 3136441, 4096576, 5290000, 6760000, 8555625, 10732176, 13351716, 16483600, 20205025, 24601600, 29767936, 35808256
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Programs
-
Maple
A001249 := proc(n) binomial(n+3,n)^2 end proc: seq(A001249(n),n=0..10) ; # Zerinvary Lajos, May 17 2006
-
Mathematica
Table[Binomial[n + 3, 3]^2, {n, 0, 100}] (* T. D. Noe, Jun 26 2012 *)
-
PARI
a(n)=binomial(n+3,3)^2 \\ Charles R Greathouse IV, Sep 24 2015
Formula
From R. J. Mathar, Aug 19 2008: (Start)
a(n) = (A000292(n+1))^2.
O.g.f.: (1+x)(x^2+8x+1)/(1-x)^7. (End)
a(n) = C(n+4, 3)*C(n+4, 4)/(n+4) + A001303(n) = C(n+4, 3)*C(n+3, 3)/4 + A001303(n) = C(n+4, 6) + 3*C(n+5, 6) + C(n+6,6) + A001303(n). - Gary Detlefs, Aug 07 2013
-n^2*a(n) + (n+3)^2*a(n-1) = 0. - R. J. Mathar, Aug 15 2013
a(n) = (n+3)*C(n+2, 2)*C(n+3, 3)/3. - Gary Detlefs, Jan 06 2014
G.f. 2F1(4,4;1;x). - R. J. Mathar, Aug 09 2015
E.g.f.: exp(x)*(1 + 15*x + 69*x^2/2! + 147*x^3/3! + 162*x^4/4! + 90*x^5/5! + 20*x^6/6!). Computed from the o.g.f with the formulas (23) - (25) of the W. Lang link given in A060187. - Wolfdieter Lang, Jul 27 2017
From Amiram Eldar, Jan 24 2022: (Start)
Sum_{n>=0} 1/a(n) = 9*Pi^2 - 351/4.
Sum_{n>=0} (-1)^n/a(n) = 63/4 - 3*Pi^2/2. (End)
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Wesley Ivan Hurt, Aug 29 2022
Comments