A342701 a(n) is the second smallest k such that phi(n+k) = phi(k), or 0 if no such solution exists.
3, 7, 5, 14, 9, 34, 7, 16, 15, 26, 11, 68, 39, 28, 15, 32, 33, 72, 25, 40, 35, 56, 17, 101, 45, 37, 45, 56, 29, 152, 31, 61, 39, 56, 35, 144, 37, 61, 39, 74, 41, 128, 35, 88, 45, 161, 47, 192, 49, 82, 51, 74, 95, 216, 43, 97, 75, 203, 59, 304, 91, 88, 63, 122
Offset: 1
Keywords
Examples
a(1) = 3 since the solutions to the equation phi(1+k) = phi(k) are k = 1, 3, 15, 104, 164, ... (A001274), and 3 is the second solution.
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, section B36, page 138-142.
- József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 3, p. 217-219.
- Wacław Sierpiński, Sur une propriété de la fonction phi(n), Publ. Math. Debrecen, Vol. 4 (1956), pp. 184-185.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Jeffery J. Holt, The minimal number of solutions to phi(n)=phi(n+k), Math. Comp., Vol. 72, No. 244 (2003), pp. 2059-2061.
- Andrzej Schinzel, Sur l'équation phi(x + k) = phi(x), Acta Arith., Vol. 4, No. 3 (1958), pp. 181-184.
- Andrzej Schinzel and Andrzej Wakulicz, Sur l'équation phi(x+k)=phi(x). II, Acta Arith., Vol. 5, No. 4 (1959), pp. 425-426.
- Eric Weisstein's World of Mathematics, k-Tuple Conjecture.
Programs
-
Mathematica
f[n_, 0] = 0; f[n_, k0_] := Module[{k = f[n, k0 - 1] + 1}, While[EulerPhi[n + k] != EulerPhi[k], k++]; k]; Array[f[#, 2] &, 100]
-
PARI
a(n) = my(k=1, nb=0); while ((nb += (eulerphi(n+k)==eulerphi(k))) != 2, k++); k; \\ Michel Marcus, Mar 19 2021
Comments