A001274 Numbers k such that phi(k) = phi(k+1).
1, 3, 15, 104, 164, 194, 255, 495, 584, 975, 2204, 2625, 2834, 3255, 3705, 5186, 5187, 10604, 11715, 13365, 18315, 22935, 25545, 32864, 38804, 39524, 46215, 48704, 49215, 49335, 56864, 57584, 57645, 64004, 65535, 73124, 105524, 107864, 123824, 131144, 164175, 184635
Offset: 1
Examples
phi(3) = phi(4) = 2, so 3 is in the sequence. phi(15) = phi(16) = 8, so 15 is in the sequence.
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 15, pp 5, Ellipses, Paris 2008.
- R. K. Guy, Unsolved Problems Number Theory, Sect. B36.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10755 (terms < 10^13, a(1)-a(2567) from T. D. Noe, a(2568)-a(5236) from J. McCranie)
- R. Baillie, Table of phi(n) = phi(n+1), Math. Comp., 30 (1976), 189-190.
- Jonathan Bayless and Paul Kinlaw, Consecutive coincidences of Euler's function, International Journal of Number Theory, Vol. 12, No. 4 (2016), pp. 1011-1026.
- Farideh Firoozbakht, Puzzle 466. phi(n-1)=phi(n)=phi(n+1), in C. Rivera's Primepuzzles.
- Kevin Ford, Solutions of phi(n)=phi(n+k) and sigma(n)=sigma(n+k), arXiv:2002.12155 [math.NT], 2020.
- Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 66.
- Paul Kinlaw, Mitsuo Kobayashi and Carl Pomerance, On the equation phi(n) = phi(n+1), Acta Arithmetica, Vol. 196 (2020), pp. 69-92, alternative link.
- V. L. Klee, Jr., Some remarks on Euler's totient function, Amer. Math. Monthly, 54 (1947), 332.
- M. Lal and P. Gillard, On the equation phi(n) = phi(n+k), Math. Comp., 26 (1972), 579-583.
- K. Miller, Solutions of phi(n) = phi(n+1) for 1 <= n <= 500000. Unpublished, 1972. [ Cf. (Untitled), Math. Comp., Vol. 27, p. 447, 1973 ].
- Leo Moser, Some equations involving Euler's totient function, Amer. Math. Monthly, 56 (1949), 22-23.
- J. Shallit, Letter to N. J. A. Sloane, Jul 17 1975.
Crossrefs
Programs
-
Haskell
import Data.List (elemIndices) a001274 n = a001274_list !! (n-1) a001274_list = map (+ 1) $ elemIndices 0 $ zipWith (-) (tail a000010_list) a000010_list -- Reinhard Zumkeller, May 20 2014, Mar 31 2011
-
Magma
[n: n in [1..3*10^5] | EulerPhi(n) eq EulerPhi(n+1)]; // Vincenzo Librandi, Apr 14 2015
-
Maple
select(n -> numtheory:-phi(n) = numtheory:-phi(n+1), [$1..10^5]); # Robert Israel, Mar 31 2015
-
Mathematica
Reap[For[n = 1; k = 2; f1 = 1, k <= 10^9, k++, f2 = EulerPhi[k]; If[f1 == f2, Print["a(", n, ") = ", k - 1]; Sow[k - 1]; n++]; f1 = f2]][[2, 1]] (* Jean-François Alcover, Mar 29 2011, revised Dec 26 2013 *) Flatten[Position[Partition[EulerPhi[Range[200000]],2,1],{x_,x_}]] (* Harvey P. Dale, Dec 27 2015 *) Select[Range[1000], EulerPhi[#] == EulerPhi[# + 1] &] (* Alonso del Arte, Oct 03 2014 *) SequencePosition[EulerPhi[Range[200000]],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 01 2018 *) k = 8; lst = {1, 3}; While[k < 200000, If[ !PrimeQ[k +1], ep = EulerPhi[k +1]; If[ EulerPhi[k] == ep, AppendTo[lst, k]]; If[ep == EulerPhi[k +2], AppendTo[lst, k +1]]]; k += 6]; lst (* Robert G. Wilson v, Apr 10 2019 *)
-
PARI
is(n)=eulerphi(n)==eulerphi(n+1) \\ Charles R Greathouse IV, Feb 27 2014
-
PARI
list(lim)=my(v=List(),old=1); forfactored(n=2,lim\1+1, my(new=eulerphi(n)); if(old==new, listput(v,n[1]-1)); old=new); Vec(v) \\ Charles R Greathouse IV, Jul 17 2022
Formula
Conjecture: a(n) ~ C*n^3*log(n), where C = 9/Pi^2 = 0.91189... - Thomas Ordowski, Oct 21 2014
Sum_{n>=1} 1/a(n) is in the interval (1.4324884, 7.8358) (Kinlaw et al., 2020; an upper bound 441702 was given by Bayless and Kinlaw, 2016). - Amiram Eldar, Oct 15 2020
Extensions
More terms from David W. Wilson
Comments