A001287 a(n) = binomial coefficient C(n,10).
1, 11, 66, 286, 1001, 3003, 8008, 19448, 43758, 92378, 184756, 352716, 646646, 1144066, 1961256, 3268760, 5311735, 8436285, 13123110, 20030010, 30045015, 44352165, 64512240, 92561040, 131128140, 183579396, 254186856, 348330136, 472733756, 635745396
Offset: 10
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
- J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 10..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Matthias Beck and Serkan Hosten, Cyclotomic polytopes and growth series of cyclotomic lattices, arXiv:math/0508136 [math.CO], 2005-2006.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 9.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 260.
- Milan Janjic, Two Enumerative Functions.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 13, 15.
- Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
Programs
-
Magma
[Binomial(n,10): n in [10..40]]; // Vincenzo Librandi, Sep 11 2015
-
Maple
seq(binomial(n,10),n=10..31); # Zerinvary Lajos, Aug 06 2008
-
Mathematica
Table[n (n + 1) (n + 2) (n + 3) (n + 4) (n + 5) (n + 6) (n + 7) (n + 8) (n + 9)/10!, {n, 1, 100}] (* Artur Jasinski, Dec 02 2007 *) Table[Binomial[n, 10], {n, 10, 20}] (* Zerinvary Lajos, Jan 31 2010 *)
-
PARI
a(n)=binomial(n,10) \\ Charles R Greathouse IV, Sep 24 2015
-
Python
A001287_list, m = [], [1]*11 for _ in range(10**2): A001287_list.append(m[-1]) for i in range(10): m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
Formula
a(n) = A110555(n+1,10). - Reinhard Zumkeller, Jul 27 2005
a(n+9) = n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)/10!. - Artur Jasinski, Dec 02 2007; R. J. Mathar, Jul 07 2009
G.f.: x^10/(1-x)^11. - Zerinvary Lajos, Aug 06 2008; R. J. Mathar, Jul 07 2009
Sum_{k>=10} 1/a(k) = 10/9. - Tom Edgar, Sep 10 2015
Sum_{n>=10} (-1)^n/a(n) = A001787(10)*log(2) - A242091(10)/9! = 5120*log(2) - 447047/126 = 0.9215009748... - Amiram Eldar, Dec 10 2020
Extensions
Formulas valid for different offsets rewritten by R. J. Mathar, Jul 07 2009
Extended by Ray Chandler, Oct 25 2011
Comments