cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001288 a(n) = binomial(n,11).

Original entry on oeis.org

1, 12, 78, 364, 1365, 4368, 12376, 31824, 75582, 167960, 352716, 705432, 1352078, 2496144, 4457400, 7726160, 13037895, 21474180, 34597290, 54627300, 84672315, 129024480, 193536720, 286097760, 417225900, 600805296, 854992152, 1203322288, 1676056044
Offset: 11

Views

Author

Keywords

Comments

Product of 11 consecutive numbers divided by 11!. - Artur Jasinski, Dec 02 2007
In this sequence there are no primes. - Artur Jasinski, Dec 02 2007
With a different offset, number of n-permutations (n>=11) of 2 objects: u,v, with repetition allowed, containing exactly (11) u's. Example: n=11, a(0)=1 because we have uuuuuuuuuuu n=12, a(1)=12 because we have uuuuuuuuuuuv, uuuuuuuuuuvu, uuuuuuuuuvuu, uuuuuuuuvuuu, uuuuuuuvuuuu, uuuuuuvuuuuu, uuuuuvuuuuuu, uuuuvuuuuuuu, uuuvuuuuuuuu, uuvuuuuuuuuu uvuuuuuuuuuu, vuuuuuuuuuuu. - Zerinvary Lajos, Aug 06 2008
Does not satisfy Benford's law (because n^11 does not, see Ross, 2012). - N. J. A. Sloane, Feb 09 2017

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    seq(binomial(n,11),n=0..30); # Zerinvary Lajos, Aug 06 2008, R. J. Mathar, Jul 07 2009
  • Mathematica
    Table[n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)/11!,{n,1,100}] (* Artur Jasinski, Dec 02 2007 *)
    Binomial[Range[11,50],11] (* Harvey P. Dale, Oct 02 2012 *)
  • PARI
    for(n=11, 50, print1(binomial(n,11), ", ")) \\ G. C. Greubel, Aug 31 2017

Formula

a(n) = -A110555(n+1,11). - Reinhard Zumkeller, Jul 27 2005
a(n+10) = n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)/11!. - Artur Jasinski, Dec 02 2007; R. J. Mathar, Jul 07 2009
G.f.: x^11/(1-x)^12. a(n) = binomial(n,11). - Zerinvary Lajos, Aug 06 2008; R. J. Mathar, Jul 07 2009
From Amiram Eldar, Dec 10 2020: (Start)
Sum_{n>=11} 1/a(n) = 11/10.
Sum_{n>=11} (-1)^(n+1)/a(n) = A001787(11)*log(2) - A242091(11)/10! = 11264*log(2) - 491821/63 = 0.9273021446... (End)

Extensions

Some formulas for other offsets corrected by R. J. Mathar, Jul 07 2009