A001288 a(n) = binomial(n,11).
1, 12, 78, 364, 1365, 4368, 12376, 31824, 75582, 167960, 352716, 705432, 1352078, 2496144, 4457400, 7726160, 13037895, 21474180, 34597290, 54627300, 84672315, 129024480, 193536720, 286097760, 417225900, 600805296, 854992152, 1203322288, 1676056044
Offset: 11
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
- J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=11..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- A. S. Chinchon, Mixing Benford, GoogleVis And On-Line Encyclopedia of Integer Sequences, 2014. Note: as of Feb 09 2017, the results in this page appear to be incorrect - N. J. A. Sloane, Feb 09 2017.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 261
- Milan Janjic, Two Enumerative Functions.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 15.
- Ângela Mestre, José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Kenneth A. Ross, First Digits of Squares and Cubes, Math. Mag. 85 (2012) 36-42.
- Index entries for sequences related to Benford's law
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Programs
-
Maple
seq(binomial(n,11),n=0..30); # Zerinvary Lajos, Aug 06 2008, R. J. Mathar, Jul 07 2009
-
Mathematica
Table[n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)/11!,{n,1,100}] (* Artur Jasinski, Dec 02 2007 *) Binomial[Range[11,50],11] (* Harvey P. Dale, Oct 02 2012 *)
-
PARI
for(n=11, 50, print1(binomial(n,11), ", ")) \\ G. C. Greubel, Aug 31 2017
Formula
a(n) = -A110555(n+1,11). - Reinhard Zumkeller, Jul 27 2005
a(n+10) = n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)/11!. - Artur Jasinski, Dec 02 2007; R. J. Mathar, Jul 07 2009
G.f.: x^11/(1-x)^12. a(n) = binomial(n,11). - Zerinvary Lajos, Aug 06 2008; R. J. Mathar, Jul 07 2009
From Amiram Eldar, Dec 10 2020: (Start)
Sum_{n>=11} 1/a(n) = 11/10.
Extensions
Some formulas for other offsets corrected by R. J. Mathar, Jul 07 2009
Comments