A001451 a(n) = (5*n)!/((3*n)!*n!*n!).
1, 20, 1260, 100100, 8817900, 823727520, 79919739900, 7962100660800, 808906548235500, 83426304143982800, 8707404737345073760, 917663774856743842200, 97491279924241456098300, 10427604345391237790688000, 1121786259855036145008408000
Offset: 0
Examples
G.f. = 1 + 20*x + 1260*x^2 + 100100*x^3 + 8817900*x^4 + 823727520*x^5 + ... - _Michael Somos_, Aug 12 2018
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
GAP
List([0..15],n->Factorial(5*n)/(Factorial(3*n)*Fact0rial(n)*Factorial(n))); # Muniru A Asiru, Aug 12 2018
-
Magma
[Factorial(5*n)/(Factorial(3*n)*Factorial(n)*Factorial(n)): n in [0..30]]; // Vincenzo Librandi, May 22 2011
-
Maple
f := n->(5*n)!/((3*n)!*n!*n!);
-
Mathematica
Table[(5*n)!/((3*n)!*n!*n!), {n, 0, 20}] (* Vincenzo Librandi, Sep 04 2012 *)
Formula
a(n) = binomial(4*n,n)*binomial(5*n,n) = ( [x^n](1 + x)^(4*n) ) * ( [x^n](1 + x)^(5*n) ) = [x^n](F(x)^(20*n)), where F(x) = 1 + x + 12*x^2 + 390*x^3 + 16984*x^4 + 867042*x^5 + 48848541*x^6 + ... appears to have integer coefficients. For similar results see A000897, A002894, A002897, A006480, A008977, A186420 and A188662. - Peter Bala, Jul 14 2016
a(n) ~ 3^(-3*n-1/2)*5^(5*n+1/2)/(2*Pi*n). - Ilya Gutkovskiy, Jul 13 2016
G.f.: G(x) = 4F3(1/5,2/5,3/5,4/5;1/3,2/3,1;(5^5/3^3)*x). Let G^(n)(x) = d^n/dx^n G(x), and c = {120, 15000*x-6, 45000*x^2-114*x, 25000*x^3-135*x^2, 3125*x^4-27*x^3}, then Sum_{n=0..4} c_n*G^(n)(x) = 0. - Bradley Klee, Aug 12 2018
From Peter Bala, Mar 20 2022: (Start)
Right-hand side of the following identities valid for n >= 1:
Sum_{k = 0..3*n} 2*n*(2*n+k-1)!/(k!*n!^2) = (5*n)!/((3*n)!*n!^2);
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k) * A108625(4*n, k) (verified using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package). - Peter Bala, Oct 12 2024
Comments