cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A000897 a(n) = (4*n)! / ((2*n)!*n!^2).

Original entry on oeis.org

1, 12, 420, 18480, 900900, 46558512, 2498640144, 137680171200, 7735904619300, 441233078286000, 25467973278667920, 1484298740174927040, 87202550985276963600, 5157850293780050462400, 306839461354466267304000, 18344908596179023234548480
Offset: 0

Views

Author

Keywords

Comments

Appears in Ramanujan's theory of elliptic functions of signature 4.
H. A. Verrill proves that a(n) = Sum_{p + q + r = 3n} w^(p-q) * {(3n)!/(p! q! r!)}^2, with p, q, r >= 0 and w = primitive 3rd root of unity.
The family of elliptic curves "x=2*H1=p^2+q^2-(1/4)*q^4, 0sqrt(-1)*q" to H1 produces "x=2*H2=p^2-q^2-(1/4)*q^4, 0Bradley Klee, Feb 25 2018
Even-order terms in the diagonal of rational function 1/(1 - (x^2 + y^2 + z)). - Gheorghe Coserea, Aug 09 2018

Examples

			G.f.: 1 + 12*x + 420*x^2 + 18480*x^3 + 900900*x^4 + 46558512*x^5 + 2498640144*x^6 + ...
		

References

  • E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 96.

Crossrefs

Cf. A002897, A008977, A186420, A188662. Elliptic Integrals: A002894, A113424, A006480. Factors: A005809, A005810, A000984, A001448.

Programs

  • GAP
    a:=n->Sum([0..3*n],k->(-1)^k*Binomial(3*n,k)*Binomial(6*n-k,3*n)*
    Binomial(2*k,k));;
    A000897:=List([0..14],n->a(n)); # Muniru A Asiru, Feb 11 2018
  • Maple
    seq((4*n)!/(n!)^4/binomial(2*n,n), n=0..14); # Zerinvary Lajos, Jun 28 2007
  • Mathematica
    Table[(4n)!/((2n)! n!^2), {n, 0, 30}] (* Stefan Steinerberger, Apr 14 2006 *)
    a[ n_] := Binomial[ 4 n, 2 n] Binomial[ 2 n, n]; (* Michael Somos, Mar 24 2013 *)
    a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/4, 3/4, 1, 64 x], {x, 0, n}]; (* Michael Somos, Mar 24 2013 *)
    a[ n_] := If[ n < 0, 0, With[{m = 4 n}, (-1)^n m! SeriesCoefficient[ BesselI[ 0, 2 x] BesselJ[ 0, 2 x], {x, 0, m}]]]; (* Michael Somos, Aug 12 2014 *)
    a[ n_] := 64^n Pochhammer[1/4, n] Pochhammer[3/4, n] / n!^2; (* Michael Somos, Aug 12 2014 *)
  • PARI
    {a(n) = if( n<0, 0, (4*n)! / ((2*n)! * n!^2))}; /* Michael Somos, Oct 31 2005 */
    

Formula

E.g.f.: Sum_{k>=0} (-1)^k * a(k) * x^(4*k) / (4*k)! = BesselI(0, 2x) * BesselJ(0, 2x).
G.f.: F(1/4, 3/4; 1; 64*x). - Michael Somos, Oct 31 2005
a(n) = A008977(n)/A000984(n) - Zerinvary Lajos, Jun 28 2007
Sum_{k>=0} a(k) * x^(3k)/(3k)!^2 = f(x)*f(x*w)*f(x/w) where f(x) = BesselI(0, 2*sqrt(x)) and w = primitive 3rd root of unity. - Michael Somos, Jul 25 2007
In general, for (BesselI(b, 2x))*(BesselJ(b, 2x))=((x^(2*b))/((GAMMA(b+1))^2)*(1-(x^4)/(Q(0)+(x^4))); Q(k)=(k+1)*(k+b+1)*(2*k+b+1)*(2*k+b+2)-(x^4)+(x^4)*(k+1)*(k+b+1)*(2*k+b+1)*(2*k+b+2)/Q(k+1)) ; (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011
D-finite with recurrence 0 = a(n)*4*(4*n + 1)*(4*n + 3) - a(n+1)*(n + 1)^2 for all n in Z. - Michael Somos, Aug 12 2014
0 = a(n)*(-4026531840*a(n+2) +2005401600*a(n+3) -103896576*a(n+4) +1251948*a(n+5)) + a(n+1)*(+41418752*a(n+2) -30435328*a(n+3) +1863228*a(n+4) -24604*a(n+5)) + a(n+2)*(-16896*a(n+2) +75608*a(n+3) -6740*a(n+4) +105*a(n+5)) for all n in Z. - Michael Somos, Aug 12 2014
From Peter Bala, Jul 12 2016: (Start)
a(n) = binomial(3*n,n)*binomial(4*n,n) = A005809(n)*A005810(n) = ( [x^n](1 + x)^(3*n) ) * ( [x^n](1 + x)^(4*n) ) = [x^n](F(x)^(12*n)), where F(x) = 1 + x + 6*x^2 + 105*x^3 + 2448*x^4 + 67043*x^5 + 2028307*x^6 + ... appears to have integer coefficients. Cf. A002894, A002897, A006480, A008977, A186420 and A188662. (End)
a(n) ~ 2^(6*n-1/2)/(Pi*n). - Ilya Gutkovskiy, Jul 12 2016
G.f.: 2*EllipticK(sqrt((sqrt(1-64*x)-1)/(2*sqrt(1-64*x))))/(Pi*(1-64*x)^(1/4)) where EllipticK is the complete elliptic integral of the first kind (in Maple's notation). - Robert Israel, Jul 12 2016
a(n) = Sum_{k = 0..3*n} (-1)^k*C(3*n,k)*C(6*n-k,3*n)*C(2*k,k). - Peter Bala, Feb 10 2018
From Bradley Klee, Feb 27 2018: (Start)
a(n) = A000984(n)*A001448(n).
G.f.: (1/(sqrt(2)*Pi))*Integral_{q=-oo..oo} 1/sqrt(q^2+(1/4)*q^4+(1-64*x)) dq.
G.f.: (1/(2*Pi))*Integral_{phi=0..2*Pi} 1/sqrt(1-64*x*sin^4(phi)) dphi. (End)
From Peter Bala, Mar 20 2022: (Start)
Right-hand side of the following identities valid for n >= 1:
Sum_{k = 0..2*n} 2*n*(2*n+k-1)!/(k!*n!^2) = (4*n)!/((2*n)!*n!^2);
(3/2)*Sum_{k = 0..n} 2*n*(3*n+k-1)!/(k!*n!*(2*n)!) = (4*n)!/((2*n)!*n!^2).
Cf. A001451. (End)
a(n) = (4^n/n!^2)*Product_{k = 0..2*n-1} (2*k + 1). - Peter Bala, Feb 26 2023
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k) * A108625(3*n, k) (verified using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package). - Peter Bala, Oct 15 2024

A113424 a(n) = (6*n)!/((3*n)!*(2*n)!*n!).

Original entry on oeis.org

1, 60, 13860, 4084080, 1338557220, 465817912560, 168470811709200, 62588625639883200, 23717177328413240100, 9124964373613212524400, 3553261127084984957001360, 1397224499394244497967972800, 553883078634868423069470550800, 221068174083308549543680044926400
Offset: 0

Views

Author

Michael Somos, Oct 31 2005

Keywords

Comments

Appears in Ramanujan's theory of elliptic functions of signature 6.
The family of elliptic curves "x=2*H=p^2+q^2-q^3, 0Bradley Klee, Feb 25 2018
The power series with coefficients a(n) * n! plays a central role in the Faber-Zagier relations on the moduli space of algebraic curves; see Pandharipande and Pixton, Section 0.2. - Harry Richman, Aug 19 2024

Examples

			G.f. = 1 + 60*x + 13860*x^2 + 4084080*x^3 + 1338557220*x^4 + ... - _Michael Somos_, Dec 02 2018
		

Crossrefs

a(n) = A347304(6*n)
Elliptic Integrals: A002894, A006480, A000897. Factors: A005809, A066802.
Cf. A188662.

Programs

  • GAP
    List([0..15],n->Factorial(6*n)/(Factorial(3*n)*Factorial(2*n)*Factorial(n))); # Muniru A Asiru, Apr 08 2018
  • Mathematica
    a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/6, 5/6, 1, 432 x], {x, 0, n}];
    Table[Multinomial[n, 2 n, 3 n], {n, 0, 15}] (* Vladimir Reshetnikov, Oct 12 2016 *)
    a[ n_] := Multinomial[n, 2 n, 3 n]; (* Michael Somos, Dec 02 2018 *)
  • PARI
    {a(n) = if( n<0, 0, (6*n)! / ((3*n)! * (2*n)! * n!))};
    

Formula

G.f.: hypergeometric2F1(1/6, 5/6; 1; 432 * x).
a(n) ~ 432^n/(2*Pi*n). - Ilya Gutkovskiy, Oct 13 2016
a(n) = A005809(n)*A066802(n). - Bradley Klee, Feb 25 2018
0 = a(n)*(-267483013447680*a(n+2) +25577192448000*a(n+3) -204669037440*a(n+4) +372142500*a(n+5)) +a(n+1)*(+408751349760*a(n+2) -57870650880*a(n+3) +546809652*a(n+4) -1088188*a(n+5)) +a(n+2)*(-17884800*a(n+2) +21466920*a(n+3) - 295844*a(n+4) +693*a(n+5)) for all n in Z. - Michael Somos, May 16 2018
From Peter Bala, Feb 28 2020: (Start)
a(n) = C(6*n,2*n)*C(4*n,n).
a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k (apply Mestrovic, equation 39).
(-1)^n*a(n) = [x^(2*n)*y^(2*n)] ( (1 + x + y)*(1 - x + y) )^(4*n).
a(n) = [x^n] ( F(x) )^(60*n), where F(x) = 1 + x + 56*x^2 + 7355*x^3 + 1290319*x^4 + 264117464*x^5 + 59508459679*x^6 + ... appears to have integer coefficients. We conjecture that for k >= 1 the sequence defined by b_k(n) := [x^n] F(x)^(k*n) satisfies the above supercongruences for primes p >= 7. (End)
From Peter Bala, Mar 20 2022: (Start)
Right-hand side of the following identities valid for n >= 1:
Sum_{k = 0..2*n} 4*n*(4*n+k-1)!/(k!*n!*(3*n)!) = (6*n)!/((3*n)!*(2*n)!*n!);
Sum_{k = 0..3*n} 3*n*(3*n+k-1)!/(k!*n!*(2*n)!) = (6*n)!/((3*n)!(2*n)!*n!).
Cf. A001451. (End)
From Peter Bala, Feb 26 2023: (Start)
a(n) = (4^n/n!^2) * Product_{k = n..3*n-1} 2*k + 1.
a(n) = (12^n/n!^2) * Product_{k = 0..n-1} (6*k + 1)*(6*k + 5). (End)
a(n) = 12*(6*n - 1)*(6*n - 5)*a(n-1)/n^2. - Neven Sajko, Jul 19 2023
From Karol A. Penson, Dec 26 2023: (Start)
a(n) = Integral_{x=0..432} x^n*W(x) dx, n>=0, where W(x) = sqrt(18)*MeijerG([[], [0, 0]], [[-1/6, -5/6], []], x/432)/(1296*Pi), where MeijerG is the Meijer G - function.
Apparently, W(x) cannot be represented by any other function. W(x) is positive on x = [0, 432], it diverges at x=0, and monotonically decreases for x>0. It appears that at x=432, W(x) tends to a constant value close to 0.000368414. This integral representation as the n-th power moment of the positive function W(x) on the interval [0, 432] is unique, as W(x) is the solution of the Hausdorff moment problem. (End)
W(x) can be represented in terms of two 2F1 hypergeometric functions, W(x) = hypergeom([1/6, 1/6], [1/3], x/432)/(6*sqrt(Pi)*Gamma(2/3)*Gamma(5/6)*x^(5/6)) - Gamma(2/3)*Gamma(5/6)*sqrt(3)*hypergeom([5/6, 5/6], [5/3], x/432)/(1152*Pi^(5/2)*x^(1/6)), x on (0, 432). - Karol A. Penson, May 16 2025

A023982 Sum of exponents in prime-power factorization of multinomial coefficient M(5n;3n,n,n).

Original entry on oeis.org

0, 3, 6, 7, 9, 13, 13, 17, 17, 17, 19, 21, 20, 27, 27, 28, 26, 30, 29, 30, 34, 36, 33, 38, 36, 38, 43, 40, 40, 46, 44, 48, 43, 46, 47, 48, 47, 51, 53, 55, 53, 57, 57, 55, 57, 59, 58, 63, 58, 62, 63, 64, 67, 73, 66, 69, 68, 67, 73, 73, 74, 79, 80, 78, 71, 77, 76, 77, 79, 84, 79, 87, 82, 87, 89, 86, 89
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := PrimeOmega[Multinomial[3*n, n, n]]; Array[a, 100, 0] (* Amiram Eldar, Jun 11 2025 *)
  • PARI
    a(n) = bigomega((5*n)! / ((3*n)!*n!*n!)); \\ Amiram Eldar, Jun 11 2025

Formula

From Amiram Eldar, Jun 11 2025: (Start)
a(n) = A001222(A001451(n)).
a(n) = A022559(5*n) - A022559(3*n) - 2*A022559(n). (End)

Extensions

Offset changed to 0 and a(0) prepended by Amiram Eldar, Jun 11 2025

A001450 a(n) = binomial(5*n,2*n).

Original entry on oeis.org

1, 10, 210, 5005, 125970, 3268760, 86493225, 2319959400, 62852101650, 1715884494940, 47129212243960, 1300853625660225, 36052387482172425, 1002596421878664480, 27963143931814663880, 781879430625942976880, 21910242651571684460050, 615167304833936727234180
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(5*n, 2*n): n in [0..20]]; // Vincenzo Librandi, Aug 07 2014
    
  • Maple
    f := n->(5*n)!/((3*n)!*(2*n)!);
  • Mathematica
    Table[Hypergeometric2F1[-3n,-2n,1,1],{n,0,60}] (* John M. Campbell, Jul 15 2011 *)
    Table[Binomial[5n,2n],{n,0,20}] (* Harvey P. Dale, Nov 09 2011 *)
  • PARI
    a(n) = binomial(5*n,2*n) \\ Altug Alkan, Oct 06 2015

Formula

a(n) = (5*n)!/((3*n)!*(2*n)!).
a(n) = 2F1[-3n,-2n,1,1] (see Mathematica code below). - John M. Campbell, Jul 15 2011
G.f.: hypergeom([1/5, 2/5, 3/5, 4/5], [1/3, 1/2, 2/3], (3125/108)*x). - Robert Israel, Aug 07 2014
From Peter Bala, Oct 05 2015: (Start)
a(n) = [x^n] ( (1 + x)*C(x) )^(5*n), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108.
a(n) = 5*A259550(n) for n >= 1.
exp( (1/5) * Sum_{n >= 1} a(n)*x^n/n ) = 1 + 2*x + 23*x^2 + 377*x^3 + ... is the o.g.f. for the sequence of Duchon numbers A060941. (End)
a(n) = [x^(2*n)] 1/(1 - x)^(3*n+1). - Ilya Gutkovskiy, Oct 10 2017
D-finite with recurrence 6*n*(3*n-1)*(2*n-1)*(3*n-2)*a(n) -5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Feb 08 2021
a(n) = Sum_{k = 0..2*n} binomial(3*n+k-1, k). Cf. A066802. - Peter Bala, Jun 04 2024
Right-hand side of the identity Sum_{k = 0..2*n} (-1)^k*binomial(-n, k)* binomial(4*n-k, 2*n-k) = binomial(5*n, 2*n). Compare with the identity Sum_{k = 0..n} (-1)^k*binomial(n, k)*binomial(4*n-k, 2*n-k) = binomial(3*n, n). - Peter Bala, Jun 05 2024
From Karol A. Penson, May 07 2025: (Start)
G.f. denoted by h(x) satisfies the following algebraic equation of order 10:
8 - 3125*x + 20*(-13 + 3125*x)*h(x) - 45*(-74 + 9375*x)*h(x)^2 + 5*(-4023 + 175000*x)*h(x)^2 + 5*(-4023 + 175000*x)*h(x)^3 + 25*(1809 + 53125*x)*h(x)^4 + (34375*x - 738)*(3125*x - 108)*h(x)^5 + 15*(3125*x + 297)*(3125*x - 108)*h(x)^6 + 5*(3125*x - 108)^2*h(x)^7 + 135*(3125*x - 108)^2*h(x)^8 + (3125*x - 108)^3*h(x)^10=0.
a(n) = Integral_{x=0..3125/108} x^n*W(x)*dx, n>=0, where W(x) = W1(x)+W2(x)+W3(x)+W4(x) can be expressed with four generalized hypergeometric functions of type 4F3:
W1(x) = sqrt(5)*csc((2*Pi)/5)*sin((3*Pi)/10)*hypergeom([1/5, 8/15, 7/10, 13/15], [2/5, 3/5, 4/5], (108*x)/3125)/(10*Pi*x^(4/5)),
W2(x) = sqrt(5)*sec((3*Pi)/10)*sin(Pi/10)*hypergeom([2/5, 11/15, 9/10, 16/15], [3/5, 4/5, 6/5], (108*x)/3125)/(50*Pi*x^(3/5)),
W3(x) = sqrt(5)*sec((3*Pi)/10)*sin(Pi/10)*hypergeom([3/5, 14/15, 11/10, 19/15], [4/5, 6/5, 7/5], (108*x)/3125)/(125*Pi*x^(2/5)), and
W4(x) = (7*sqrt(5)*csc((2*Pi)/5)*sin((3*Pi)/10)*hypergeom([4/5, 17/15, 13/10, 22/15], [6/5, 7/5, 8/5], (108*x)/3125))/(1250*Pi*x^(1/5)).
Using the formula for a(n) only, W(x) can be shown to be a positive function. It is singular at x=0 and at x=3125/108. This integral representation is unique since W(x) is the solution of the Hausdorff moment problem. (End)
From Peter Bala, Jun 21 2025: (Start)
a(n) = [x^(3*n)] 1/(1 - x)^(2*n+1).
a(n) = Sum_{k = 0..3*n} binomial(2*n+k-1, k). (End)

A184423 a(n) = (2*n)!*(3*n)!/n!^5.

Original entry on oeis.org

1, 12, 540, 33600, 2425500, 190702512, 15849497664, 1369618398720, 121821136479900, 11079206239530000, 1025579963180813040, 96310511463483233280, 9152842704012278107200, 878622906816654279840000
Offset: 0

Views

Author

Paul D. Hanna, Jan 13 2011

Keywords

Comments

Denoted by h_3[n] by T. Piezas III. He also gives formulas for 1/Pi such as 1/Pi = 2 * Sum_{n>=0} a(n) * (-1)^n * (51*n + 7) / (12^3)^(n + 1/2). - Michael Somos, May 31 2012
Diagonal of the rational function R(x,y,z,w) = 1/(1-(w*y+w*z+x+y+z)). - Gheorghe Coserea, Jul 15 2016
From Peter Bala, Jun 28 2023: (Start)
The supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for primes p >= 5 and positive integers n and r. This follows from Meštrović equation 39, since a(n) = binomial(3*n,n) * binomial(2*n,n)^2.
Inductively define a family of sequences {a(i,n) : n >= 0}, i >= 1, by setting a(1,n) = a(n) and, for i >= 2, a(i,n) = [x^n] ( exp(Sum_{k >= 1} a(i-1,k)*x^k/k) )^n. We conjecture that the sequences {a(i,n) : n >= 0}, i >= 2, also satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for primes p >= 5 and positive integers n and r. Cf. A362730 and A362732. (End)

Examples

			G.f.: A(x) = 1 + 12*x + 540*x^2 + 33600*x^3 + 2425500*x^4 +...
G.f. of A184424 equals A(x)^(1/2):
A(x)^(1/2) = 1 + 6*x + 252*x^2 + 15288*x^3 + 1089270*x^4 + 84963060*x^5 +...+ [(3^n/n!^2)*Product_{k=1..n} (6*k-4)*(6*k-5)]*x^n +...
		

Crossrefs

Related to diagonal of rational functions: A268545-A268555.

Programs

  • Mathematica
    Table[((2n)!(3n)!)/(n!)^5,{n,0,20}] (* Harvey P. Dale, Dec 18 2018 *)
  • PARI
    {a(n)=(3*n)!*(2*n)!/n!^5}
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,3^m*prod(k=1,m,(6*k-4)*(6*k-5))/m!^2*x^m+x*O(x^n))^2,n)}

Formula

Self-convolution of A184424:
a(n) = Sum_{k=0..n} A184424(k)*A184424(n-k) where A184424(n) = (3^n/n!^2)*Product_{k=1..n} (6*k-4)*(6*k-5).
a(n) = 6 * (2*n - 1) * (3*n - 1) * (3*n - 2) / n^3 * a(n-1) if n>0. - Michael Somos, May 31 2012
0 = (x^2-108*x^3)*y''' + (3*x-486*x^2)*y''+ (1-348*x)*y' - 12*y, where y is g.f. - Gheorghe Coserea, Jul 15 2016
a(n) ~ 3^(1/2)/(2*Pi^(3/2)) * n^(-3/2) * 108^n. - Ilya Gutkovskiy, Jul 15 2016
a(n) = C(2*n,n)^2 * C(3*n,n) = ( [x^n](1 + x)^(2*n) )^2 * ( [x^n](1 + x)^(3*n) ) = [x^n]( F(x)^(12*n) ), where [x^n] is the coefficient extraction operator and where F(x) = 1 + x + 11*x^2 + 350*x^3 + 15293*x^4 + 794433*x^5 + 45958617*x^6 + ... appears to have integral coefficients. Cf. A000897 and A001451. - Peter Bala, Dec 30 2019

A273628 a(n) = (7*n)!/((5*n)!*n!^2).

Original entry on oeis.org

1, 42, 6006, 1085280, 217567350, 46262007792, 10217700004512, 2317454130543552, 536022010184210550, 125863265857621191900, 29909151834298018538256, 7176685161839833601969280, 1735941935586019529116213920, 422752608090008019258722317800
Offset: 0

Views

Author

Peter Bala, Jul 15 2016

Keywords

Comments

This sequence occurs as the right-hand side of the binomial sum identity Sum_{k = 0..n} (-1)^k*binomial(n,k)*binomial(3*n + k,n)*binomial(4*n - k,n) = (-1)^m*a(m) for n = 2*m. For similar results see A001451, A006480 and A273629. Note the related sums:
Sum_{k = 0..n} (-1)^k*binomial(n,k)*binomial(3*n + k,n)*binomial(4*n + k,n) = (-1)^n*(2*n)!*(4*n)!/(n!^3*(3*n)!) = (-1)^n*binomial(2*n,n)*binomial(4*n,n) = (-1)^n*A000984(n)*A005810(n);
Sum_{k = 0..n} (-1)^k*binomial(n,k)*binomial(3*n - k,n)*binomial(4*n - k,n) = (3*n)!/n!^3 = A006480(n);
Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(3*n + k,n)*binomial(4*n + k,n) = Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(3*n - k,n)*binomial(4*n - k,n) = binomial(2*n,n) = A000984(n);
Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(3*n + k,n)*binomial(4*n - k,n) = Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(3*n - k,n)*binomial(4*n + k,n) = (-1)^n*binomial(2*n,n) = (-1)^n*A000984(n).

Crossrefs

Programs

  • Magma
    [Factorial(7*n) div (Factorial(5*n)*Factorial(n)^2): n in [0..15]]; // Vincenzo Librandi, Jul 16 2016
  • Maple
    seq((7*n)!/((5*n)!*n!^2), n = 0..20);
  • Mathematica
    Table[(7 n)!/((5 n)! n!^2), {n, 0, 13}] (* or *)
    Table[Binomial[7 n, n] Binomial[6 n, n], {n, 0, 13}] (* Michael De Vlieger, Jul 15 2016 *)

Formula

a(n) = (7*n)!/((5*n)!*n!^2) = binomial(7*n,2*n)*binomial(2*n,n).
a(n) = binomial(7*n,n)*binomial(6*n,n) = [x^n](1 + x)^(7*n) * [x^n](1 + x)^(6*n).
It appears that a(n) = [x^n] F(x)^(42*n), where F(x) = 1 + x + 30*x^2 + 2280*x^3 + 232715*x^4 + 27800465*x^5 + 3661895341*x^6 + ... has all integer coefficients. Cf. A273629 and A008979.
Recurrence: 5*n^2*(5*n - 1)*(5*n - 2)*(5*n - 3)*(5*n - 4)*a(n) = 7*(7*n - 1)*(7*n - 2)*(7*n - 3)*(7*n - 4)*(7*n - 5)*(7*n - 6)*a(n-1).
a(n) ~ 5^(-5*n-1/2)*7^(7*n+1/2)/(2*Pi*n). - Ilya Gutkovskiy, Jul 15 2016
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k) * A108625(6*n, k) (verified using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package). - Peter Bala, Oct 15 2024

A273629 a(n) = (9*n)!/((7*n)!*n!^2).

Original entry on oeis.org

1, 72, 18360, 5920200, 2118223800, 803927196072, 316938365223480, 128313095514575400, 52976845635264939960, 22204947580777261872000, 9418997650746914743158360, 4034374193416822645489549632, 1741969558937890710303111545400
Offset: 0

Views

Author

Peter Bala, Jul 15 2016

Keywords

Comments

This sequence occurs as the right-hand side of the binomial sum identity Sum_{k = 0..n} (-1)^k*binomial(n,k)*binomial(4*n + k,n)*binomial(5*n - k,n) = (-1)^m*a(m) for n = 2*m. The sum vanishes for n odd. For similar results see A001451, A006480 and A273628.
Note the related sums:
Sum_{k = 0..n} (-1)^k*binomial(n,k)*binomial(4*n - k,n)*binomial(5*n - k,n) = binomial(2*n,n)*binomial(4*n,n) = A000984(n)*A005810(n);
Sum_{k = 0..2*n} (-1)^k*binomial(n,k)*binomial(4*n + k,n)*binomial(5*n + k,n) = Sum_{k = 0..2*n} (-1)^k*binomial(n,k)*binomial(4*n - k,n)*binomial(5*n - k,n) = binomial(2*n,n) = A000984(n).
Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(4*n + k,n)*binomial(5*n - k,n) = Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(4*n - k,n)*binomial(5*n + k,n) = (-1)^n*binomial(2*n,n) = (-1)^n*A000984(n).

Crossrefs

Programs

  • Magma
    [Factorial(9*n)/(Factorial(7*n)*Factorial(n)^2): n in [0..40]]; // Vincenzo Librandi, Jul 17 2016
  • Maple
    seq((9*n)!/((7*n)!*n!^2), n = 0..20);
  • Mathematica
    Table[Factorial[9 n] / (Factorial[7 n] Factorial[n]^2), {n, 0, 20}] (* Vincenzo Librandi, Jul 17 2016 *)

Formula

a(n) = (9*n)!/((7*n)!*n!^2) = binomial(9*n,2*n)* binomial(2*n,n).
a(n) = binomial(8*n,n)*binomial(9*n,n) = A004381(n)*A169958(n).
a(n) = [x^n](1 + x)^(8*n) * [x^n] (1 + x)^(9*n).
It appears that a(n) = [x^n] F(x)^(72*n), where F(x) = 1 + x + 56*x^2 + 7700*x^3 + 1422008*x^4 + 307144278*x^5 + 73118586828*x^6 + ... has all integer coefficients. Cf. A273628 and A008979.
Recurrence: 7*n^2*(7*n - 1)*(7*n - 2)*(7*n - 3)*(7*n - 4)*(7*n - 5)*(7*n - 6)*a(n) = 9*(9*n - 1)*(9*n - 2)*(9*n - 3)*(9*n - 4)*(9*n - 5)*(9*n - 6)*(9*n - 7)*(9*n - 8)*a(n-1).
a(n) ~ 3^(18*n+1)*7^(-7*n-1/2)/(2*Pi*n). - Ilya Gutkovskiy, Jul 15 2016
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k) * A108625(8*n, k) (verified using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package). - Peter Bala, Oct 15 2024
Showing 1-7 of 7 results.