A001469 Genocchi numbers (of first kind); unsigned coefficients give expansion of x*tan(x/2).
-1, 1, -3, 17, -155, 2073, -38227, 929569, -28820619, 1109652905, -51943281731, 2905151042481, -191329672483963, 14655626154768697, -1291885088448017715, 129848163681107301953, -14761446733784164001387, 1884515541728818675112649, -268463531464165471482681379
Offset: 1
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 49.
- L. Euler, Institutionum Calculi Differentialis, volume 2 (1755), para. 181.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 73.
- A. Genocchi, Intorno all'espressione generale de'numeri Bernulliani, Ann. Sci. Mat. Fis., 3 (1852), 395-405.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 528.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.8.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..275 (first 100 terms from T. D. Noe)
- F. Alayont and N. Krzywonos, Rook Polynomials in Three and Higher Dimensions, 2012.
- R. C. Archibald, Review of Terrill-Terrill paper, Math. Comp., 1 (1945), pp. 385-386.
- R. B. Brent, Generalizing Tuenter's Binomial Sums, J. Int. Seq. 18 (2015) # 15.3.2.
- Alexander Burstein, Sergi Elizalde and Toufik Mansour, Restricted Dumont permutations, Dyck paths and noncrossing partitions, arXiv:math/0610234 [math.CO], 2006.
- M. Domaratzki, A Generalization of the Genocchi Numbers with Applications to ...
- M. Domaratzki, Combinatorial Interpretations of a Generalization of the Genocchi Numbers, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.6.
- D. Dumont, Sur une conjecture de Gandhi concernant les nombres de Genocchi, (in French), Discrete Mathematics 1 (1972) 321-327.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
- Dominique Dumont and Arthur Randrianarivony, Sur une extension des nombres de Genocchi, European J. Combin. 16 (1995), 147-151.
- Dominique Dumont and Arthur Randrianarivony, Dérangements et nombres de Genocchi, Discrete Math. 132 (1994), 37-49.
- Richard Ehrenborg and Einar Steingrímsson, Yet another triangle for the Genocchi numbers, European J. Combin. 21 (2000), no. 5, 593-600. MR1771988 (2001h:05008).
- J. M. Gandhi, Research Problems: A Conjectured Representation of Genocchi Numbers, Amer. Math. Monthly 77 (1970), no. 5, 505-506. MR1535914.
- I. M. Gessel, Applications of the classical umbral calculus, arXiv:math/0108121 [math.CO], 2001.
- Ira M. Gessel, On the Almkvist-Meurman Theorem for Bernoulli Polynomials, Integers (2023) Vol. 23, #A14.
- Ira M. Gessel, A short proof of the Almkvist-Meurman theorem, arXiv:2310.15312 [math.NT], 2023.
- René Gy, Bernoulli-Stirling Numbers, Integers (2020) Vol. 20, #A67.
- J. M. Hammersley, An undergraduate exercise in manipulation, Math. Scientist, 14 (1989), 1-23.
- J. M. Hammersley, An undergraduate exercise in manipulation, Math. Scientist, 14 (1989), 1-23. (Annotated scanned copy)
- Gábor Hetyei, Alternation acyclic tournaments, arXiv:math/1704.07245 [math.CO], 2017.
- G. Kreweras, Sur les permutations comptées par les nombres de Genocchi de 1-ière et 2-ième espèce, Europ. J. Comb., vol. 18, pp. 49-58, 1997.
- D. H. Lehmer, Lacunary recurrence formulas for the numbers of Bernoulli and Euler, Annals Math., 36 (1935), 637-649.
- H. Liang and Wuyungaowa, Identities Involving Generalized Harmonic Numbers and Other Special Combinatorial Sequences, J. Int. Seq. 15 (2012) #12.9.6
- Qui-Ming Luo, Fourier expansions and integral representations for Genocchi Polynomials, JIS 12 (2009) 09.1.4.
- T. Mansour, Restricted 132-Dumont permutations, arXiv:math/0209379 [math.CO], 2002.
- A. Randrianarivony and J. Zeng, Une famille de polynomes qui interpole plusieurs suites..., Adv. Appl. Math. 17 (1996), 1-26.
- John Riordan and Paul R. Stein, Proof of a conjecture on Genocchi numbers, Discrete Math. 5 (1973), 381-388. MR0316372 (47 #4919).
- N. J. A. Sloane, Rough notes on Genocchi numbers
- H. M. Terrill and E. M. Terrill, Tables of numbers related to the tangent coefficients, J. Franklin Inst., 239 (1945), 66-67.
- H. M. Terrill and E. M. Terrill, Tables of numbers related to the tangent coefficients, J. Franklin Inst., 239 (1945), 64-67. [Annotated scanned copy]
- Hans J. H. Tuenter, Walking into an absolute sum, arXiv:math/0606080 [math.NT], 2006. Published version on Walking into an absolute sum, The Fibonacci Quarterly, 40(2):175-180, May 2002.
- G. Viennot, Interprétations combinatoires des nombres d'Euler et de Genocchi, Séminaire de théorie des nombres, 1980/1981, Exp. No. 11, p. 41, Univ. Bordeaux I, Talence, 1982.
- Eric Weisstein's World of Mathematics, Genocchi Number.
- J. Worpitsky, Studien ueber die Bernoullischen und Eulerschen Zahlen, Journal für die reine undangewandte Mathematik (Crelle), 94 (1883), 203-232. See page 232. [Annotated scanned copy]
- Index entries for sequences related to Bernoulli numbers.
Crossrefs
Programs
-
Magma
[2*(1 - 4^n) * Bernoulli(2*n): n in [1..25]]; // Vincenzo Librandi, Oct 15 2018
-
Maple
A001469 := proc(n::integer) (2*n)!*coeftayl( 2*x/(exp(x)+1), x=0,2*n) end proc: for n from 1 to 20 do print(A001469(n)) od : # R. J. Mathar, Jun 22 2006
-
Mathematica
a[n_] := 2*(1-4^n)*BernoulliB[2n]; Table[a[n], {n, 17}] (* Jean-François Alcover, Nov 24 2011 *) a[n_] := 2*n*EulerE[2*n-1, 0]; Table[a[n], {n, 17}] (* Jean-François Alcover, Jul 02 2013 *) Table[4 n PolyLog[1 - 2 n, -1], {n, 1, 19}] (* Peter Luschny, Aug 17 2021 *)
-
PARI
a(n)=if(n<1,0,n*=2; 2*(1-2^n)*bernfrac(n))
-
PARI
{a(n)=polcoeff(sum(m=0, n, m!^2*(-x)^(m+1)/prod(k=1, m, 1-k^2*x+x*O(x^n))), n)} /* Paul D. Hanna, Jul 21 2011 */
-
Python
from sympy import bernoulli def A001469(n): return (2-(2<<(m:=n<<1)))*bernoulli(m) # Chai Wah Wu, Apr 14 2023
-
Sage
# Algorithm of L. Seidel (1877) # n -> [a(1), ..., a(n)] for n >= 1. def A001469_list(n) : D = [0]*(n+2); D[1] = -1 R = []; b = False for i in(0..2*n-1) : h = i//2 + 1 if b : for k in range(h-1, 0, -1) : D[k] -= D[k+1] else : for k in range(1, h+1, 1) : D[k] -= D[k-1] b = not b if not b : R.append(D[h]) return R A001469_list(17) # Peter Luschny, Jun 29 2012
Formula
a(n) = 2*(1-4^n)*B_{2n} (B = Bernoulli numbers).
x*tan(x/2) = Sum_{n>=1} x^(2*n)*abs(a(n))/(2*n)! = x^2/2 + x^4/24 + x^6/240 + 17*x^8/40320 + 31*x^10/725760 + O(x^11).
E.g.f.: 2*x/(1 + exp(x)) = x + Sum_{n>=1} a(2*n)*x^(2*n)/(2*n)! = -x^2/2! + x^4/4! - 3 x^6/6! + 17 x^8/8! + ...
O.g.f.: Sum_{n>=0} n!^2*(-x)^(n+1) / Product_{k=1..n} (1-k^2*x). - Paul D. Hanna, Jul 21 2011
a(n) = Sum_{k=0..2n-1} 2^k*B(k)*binomial(2*n,k) where B(k) is the k-th Bernoulli number. - Benoit Cloitre, May 31 2003
abs(a(n)) = Sum_{k=0..2n} (-1)^(n-k+1)*Stirling2(2n, k)*A059371(k). - Vladeta Jovovic, Feb 07 2004
G.f.: -x/(1+x/(1+2x/(1+4x/(1+6x/(1+9x/(1+12x/(1+16x/(1+20x/(1+25x/(1+...(continued fraction). - Philippe Deléham, Nov 22 2011
E.g.f.: E(x) = 2*x/(exp(x)+1) = x*(1-(x^3+2*x^2)/(2*G(0)-x^3-2*x^2)); G(k) = 8*k^3 + (12+4*x)*k^2 + (4+6*x+2*x^2)*k + x^3 + 2*x^2 + 2*x - 2*(x^2)*(k+1)*(2*k+1)*(x+2*k)*(x+2*k+4)/G(k+1); (continued fraction, Euler's kind, 1-step). - Sergei N. Gladkovskii, Jan 18 2012
a(n) = (-1)^n*(2*n)!*Pi^(-2*n)*4*(1-4^(-n))*Li{2*n}(1). - Peter Luschny, Jun 29 2012
Asymptotic: abs(a(n)) ~ 8*Pi*(2^(2*n)-1)*(n/(Pi*exp(1)))^(2*n+1/2)*exp(1/2+(1/24)/n-(1/2880)/n^3+(1/40320)/n^5+...). - Peter Luschny, Jul 24 2013
G.f.: x/(T(0)-x) -1, where T(k) = 2*x*k^2 + 4*x*k + 2*x - 1 - x*(-1+x+2*x*k+x*k^2)*(k+2)^2/T(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 17 2013
G.f.: -1 + x/(T(0)+x), where T(k) = 1 + (k+1)*(k+2)*x/(1+x*(k+2)^2/T(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 17 2013
a(n) = 4*n*PolyLog(1 - 2*n, -1). - Peter Luschny, Aug 17 2021
Comments