cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001473 Number of degree-n permutations of order exactly 4.

Original entry on oeis.org

0, 0, 0, 6, 30, 180, 840, 5460, 30996, 209160, 1290960, 9753480, 69618120, 571627056, 4443697440, 40027718640, 346953934320, 3369416698080, 31421601510336, 328430320909920, 3331475969159520, 37124416523261760
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 +x^4/4) -Exp(x+x^2/2) )); [0,0,0] cat [Factorial(n+3)*b[n]: n in [1..m-4]]; // G. C. Greubel, May 14 2019
    
  • Mathematica
    Rest@With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^4/4] - Exp[x +x^2/2], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 14 2019 *)
  • PARI
    my(x=xx+O(xx^33)); concat([0,0,0], Vec(serlaplace(-exp(x+1/2*x^2) +exp(x+1/2*x^2+1/4*x^4)))) \\ Michel Marcus, Dec 12 2014
    
  • Sage
    m = 30; T = taylor(exp(x +x^2/2 +x^4/4) - exp(x+x^2/2), x, 0, m); a=[factorial(n)*T.coefficient(x, n) for n in (0..m)]; a[1:] # G. C. Greubel, May 14 2019

Formula

E.g.f.: exp(x + x^2/2 + x^4/4) - exp(x + x^2/2).

Extensions

More terms from Vladeta Jovovic, Apr 14 2001