cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001555 a(n) = 1^n + 2^n + ... + 8^n.

Original entry on oeis.org

8, 36, 204, 1296, 8772, 61776, 446964, 3297456, 24684612, 186884496, 1427557524, 10983260016, 84998999652, 660994932816, 5161010498484, 40433724284976, 317685943157892, 2502137235710736, 19748255868485844, 156142792528260336, 1236466399775623332
Offset: 0

Views

Author

Keywords

Comments

Conjectures for o.g.f.s for this type of sequence appear in the PhD thesis by Simon Plouffe. See A001552 for the reference. These conjectures are proved in a link given in A196837. [Wolfdieter Lang, Oct 15 2011]

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 8 of array A103438.

Programs

  • Maple
    seq(add(j^n,j=1..8), n=0..20); # Robert Israel, Aug 23 2015
  • Mathematica
    Table[Total[Range[8]^n], {n, 0, 20}] (* T. D. Noe, Aug 09 2012 *)
  • PARI
    first(m)=vector(m,n,n--;sum(i=1,8,i^n)) \\ Anders Hellström, Aug 23 2015

Formula

From Wolfdieter Lang, Oct 15 2011 (Start)
E.g.f.: (1-exp(8*x))/(exp(-x)-1) = Sum_{j=1..8} exp(j*x) (trivial).
O.g.f.: 4*(2-9*x)*(1-27*x+288*x^2-1539*x^3+4299*x^4-5886*x^5+3044*x^6) / Product_{j=1..8} (1-j*x). From the e.g.f. via Laplace transformation. See the proof in a link under A196837. (End)
a(n) = A001554(n) + A001018(n). - Michel Marcus, Jul 26 2013

Extensions

More terms from Jon E. Schoenfield, Mar 24 2010