A001564 2nd differences of factorial numbers.
1, 3, 14, 78, 504, 3720, 30960, 287280, 2943360, 33022080, 402796800, 5308934400, 75203251200, 1139544806400, 18394619443200, 315149522688000, 5711921639424000, 109196040425472000, 2196014181064704000, 46346783255764992000, 1024251745442365440000
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- A. van Heemert, Cyclic permutations with sequences and related problems, J. Reine Angew. Math., 198 (1957), 56-72.
- Milan Janjić, Enumerative Formulae for Some Functions on Finite Sets
- A. N. Myers, Counting permutations by their rigid patterns, J. Combin. Theory, A 99 (2002), 345-357.
- Index entries for sequences related to factorial numbers
Programs
-
Magma
[(n^2+n+1)*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Apr 10 2015
-
Maple
seq(factorial(n)*(n^2+n+1), n = 0 .. 20); # Emeric Deutsch, Apr 18 2009
-
Mathematica
Range[0,20]! CoefficientList[Series[(1+x^2)/(1-x)^3,{x,0,20}],x] Differences[Range[0, 25]!, 2] (* Paolo Xausa, Jul 17 2025 *)
-
PARI
Vec(serlaplace((1+x^2)/(1-x)^3 + O(x^30))) \\ Michel Marcus, Apr 10 2015
Formula
E.g.f.: (1+x^2)/(1-x)^3.
a(n) = A306209(n+2,n). - Alois P. Heinz, Jan 29 2019
D-finite with recurrence a(n) +(-n-3)*a(n-1) +(n-1)*a(n-2)=0. - R. J. Mathar, Jul 01 2022
Extensions
Comment edited by Franklin T. Adams-Watters, May 20 2010
Comments