cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001602 Fibonacci entry points: a(n) = smallest m > 0 such that the n-th prime divides Fibonacci(m).

Original entry on oeis.org

3, 4, 5, 8, 10, 7, 9, 18, 24, 14, 30, 19, 20, 44, 16, 27, 58, 15, 68, 70, 37, 78, 84, 11, 49, 50, 104, 36, 27, 19, 128, 130, 69, 46, 37, 50, 79, 164, 168, 87, 178, 90, 190, 97, 99, 22, 42, 224, 228, 114, 13, 238, 120, 250, 129, 88, 67, 270, 139, 28, 284, 147, 44, 310
Offset: 1

Views

Author

Keywords

Comments

"[a(n)] is called by Lucas the rank of apparition of p and we know it is a divisor of, or equal to prime(n)-1 or prime(n)+1" - Vajda, p. 84. (Note that a(3)=5. This is the only exception.) - Chris K. Caldwell, Nov 03 2008
Every number except 1, 2, 6 and 12 eventually occurs in this sequence. See also A086597(n), the number of primitive prime factors of Fibonacci(n). - T. D. Noe, Jun 13 2008
For each prime p we have an infinite sequence of integers, F(i*a(n))/p, i=1,2,... See also A236479. For primes p >= 3 and exponents j >= 2, with k = a(n) and p = p(n), it appears that F(k*i*p^(j-1))/p^j is an integer, for i >= 0. For p = 2, F(k*i*p^(j-1))/p^(j+1) = integer. - Richard R. Forberg, Jan 26-29 2014 [Comments revised by N. J. A. Sloane, Sep 24 2015]
Let p=prime(n). a(n) is also a divisor of (p-1)/2 (if p mod 5 == 1 or 4) or (p+1)/2 (if p mod 5 == 2 or 3) if and only if p mod 4 = 1. - Seiichi Azuma, Jul 29 2014

Examples

			The 5th prime is 11 and 11 first divides Fib(10)=55, so a(5) = 10.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.

Crossrefs

Cf. A051694, A001177, A086597, A194363 (entries Lucas).

Programs

  • Haskell
    import Data.List (findIndex)
    import Data.Maybe (fromJust)
    a001602 n = (+ 1) $ fromJust $
                findIndex ((== 0) . (`mod` a000040 n)) $ tail a000045_list
    -- Reinhard Zumkeller, Apr 08 2012
    
  • Maple
    A001602 := proc(n)
        local i,p;
        p := ithprime(n);
        for i from 1 do
            if modp(combinat[fibonacci](i),p) = 0 then
                return i;
            end if;
        end do:
    end proc: # R. J. Mathar, Oct 31 2015
  • Mathematica
    Table[k=1;While[!Divisible[Fibonacci[k],Prime[n]],k++];k,{n,70}] (* Harvey P. Dale, Feb 15 2012 *)
    (* a fast, but more complicated method *) MatrixPowerMod[mat_, n_, m_Integer] := Mod[Fold[Mod[If[#2 == 1, #1.#1.mat, #1.#1], m] &, mat, Rest[IntegerDigits[n, 2]]], m]; FibMatrix[n_Integer, m_Integer] := MatrixPowerMod[{{0, 1}, {1, 1}}, n, m]; FibEntryPointPrime[p_Integer] := Module[{n, d, k}, If[PrimeQ[p], n = p - JacobiSymbol[p, 5]; d = Divisors[n]; k = 1; While[FibMatrix[d[[k]], p][[1, 2]] > 0, k++]; d[[k]]]]; SetAttributes[FibEntryPointPrime, Listable]; FibEntryPointPrime[Prime[Range[10000]]] (* T. D. Noe, Jan 03 2013 *)
    With[{nn=70,t=Table[{n,Fibonacci[n]},{n,500}]},Transpose[ Flatten[ Table[ Select[t,Divisible[#[[2]],Prime[i]]&,1],{i,nn}],1]][[1]]] (* Harvey P. Dale, May 31 2014 *)
  • PARI
    a(n)=if(n==3,5,my(p=prime(n));fordiv(p^2-1,d,if(fibonacci(d)%p==0, return(d)))) \\ Charles R Greathouse IV, Jul 17 2012
    
  • PARI
    do(p)=my(k=p+[0,-1,1,1,-1][p%5+1],f=factor(k));for(i=1,#f[,1],for(j=1,f[i,2],if((Mod([1,1;1,0],p)^(k/f[i,1]))[1,2], break); k/=f[i,1])); k
    a(n)=do(prime(n))
    apply(do, primes(100)) \\ Charles R Greathouse IV, Jan 03 2013
    
  • Python
    from sympy.ntheory.generate import prime
    def A001602(n):
        a, b, i, p = 0, 1, 1, prime(n)
        while b % p:
            a, b, i = b, (a+b) % p, i+1
        return i # Chai Wah Wu, Nov 03 2015, revised Apr 04 2016.

Formula

a(n) = A001177(prime(n)).
a(n) <= prime(n) + 1. - Charles R Greathouse IV, Jan 02 2013

Extensions

More terms from Jud McCranie