A001641 A Fielder sequence: a(n) = a(n-1) + a(n-2) + a(n-4).
1, 3, 4, 11, 16, 30, 50, 91, 157, 278, 485, 854, 1496, 2628, 4609, 8091, 14196, 24915, 43720, 76726, 134642, 236283, 414645, 727654, 1276941, 2240878, 3932464, 6900996, 12110401, 21252275, 37295140, 65448411, 114853952, 201554638, 353703730, 620706779
Offset: 1
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Wikipedia, Companion matrix.
- A. V. Zarelua, On Matrix Analogs of Fermat's Little Theorem, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no.
- 6, 2006, pp. 840-855.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,1).
Programs
-
Magma
I:=[1,3,4,11]; [n le 4 select I[n] else Self(n-1) + Self(n-2) + Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 09 2018
-
Maple
A001641:=-(1+2*z+4*z**3)/(z+1)/(z**3-z**2+2*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
LinearRecurrence[{1, 1, 0, 1}, {1, 3, 4, 11}, 50] (* T. D. Noe, Aug 09 2012 *)
-
Maxima
a(n):=(sum(sum(binomial(j,n-4*k+3*j)*binomial(k,j),j,floor((4*k-n)/3),floor((4*k-n)/2))/k,k,1,n))*n; /* Vladimir Kruchinin, May 25 2011 */
-
PARI
a(n)=if(n<0,0,polcoeff(x*(1+2*x+4*x^3)/(1-x-x^2-x^4)+x*O(x^n),n))
Formula
G.f.: x*(1+2*x+4*x^3)/(1-x-x^2-x^4).
a(n) = n*Sum_{k=1..n} Sum_{j=floor((4*k-n)/3)..floor((4*k-n)/2)} binomial(j,n-4*k+3*j)*binomial(k,j)/k. - Vladimir Kruchinin, May 25 2011
a(n) = Trace(M^n), where M = [0, 0, 0, 1; 1, 0, 0, 0; 0, 1, 0, 1; 0, 0, 1, 1] is the companion matrix to the monic polynomial x^4 - x^3 - x^2 - 1. It follows that the sequence satisfies the Gauss congruences: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. - Peter Bala, Dec 31 2022