cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001662 Coefficients of Airey's converging factor.

Original entry on oeis.org

0, 1, 1, -1, -1, 13, -47, -73, 2447, -16811, -15551, 1726511, -18994849, 10979677, 2983409137, -48421103257, 135002366063, 10125320047141, -232033147779359, 1305952009204319, 58740282660173759, -1862057132555380307, 16905219421196907793, 527257187244811805207
Offset: 0

Views

Author

Keywords

Comments

A051711 times the coefficient in expansion of W(exp(x)) about x=1, where W is the Lambert function. - Paolo Bonzini, Jun 22 2016
The polynomials with coefficients in triangle A008517, evaluated at -1.

Examples

			G.f. = x + x^2 - x^3 - x^4 + 13*x^5 - 47*x^6 - 73*x^7 + 2447*x^8 + ... - _Michael Somos_, Jun 23 2019
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(combinat); A001662 := proc(n) add((-1)^k*eulerian2(n-1,k),k=0..n-1) end:
    seq(A001662(i),i=0..23); # Peter Luschny, Nov 13 2012
  • Mathematica
    a[0] = 0; a[n_] := Sum[ (n+k-1)! * Sum[ (-1)^j/(k-j)! * Sum[ 1/i! * StirlingS1[n-i+j-1, j-i] / (n-i+j-1)!, {i, 0, j}] * 2^(n-j-1), {j, 0, k}], {k, 0, n-1}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 26 2013, after Vladimir Kruchinin *)
    a[ n_] := If[ n < 1, 0, 2^(n - 1) Sum[ (-2)^-j StirlingS1[n - i + j - 1, j - i] Binomial[n + k - 1, n + j - 1] Binomial[n + j - 1, i], {k, 0, n - 1}, {j, 0, k}, {i, 0, j}]]; (* Michael Somos, Jun 23 2019 *)
    len := 12; gf := (1/2) (LambertW[Exp[x + 1]] - 1);
    ser := Series[gf, { x, 0, len}]; norm := Table[n! 4^n, {n, 0, len}];
    CoefficientList[ser, x] * norm (* Peter Luschny, Jun 24 2019 *)
  • Maxima
    a(n):= if n=0 then 1 else (sum((n+k-1)!*sum(((-1)^(j)/(k-j)!*sum((1/i! *stirling1(n-i+j-1, j-i))/(n-i+j-1)!, i, 0, j))*2^(n-j-1), j, 0, k), k, 0, n-1)); /* Vladimir Kruchinin, Nov 11 2012 */
  • SageMath
    @CachedFunction
    def eulerian2(n, k):
        if k==0: return 1
        elif k==n: return 0
        return eulerian2(n-1, k)*(k+1)+eulerian2(n-1, k-1)*(2*n-k-1)
    def A001662(n): return add((-1)^k*eulerian2(n-1,k) for k in (0..n-1))
    [A001662(m) for m in (0..23)] # Peter Luschny, Nov 13 2012
    

Formula

Let b(n) = 0, 1, -1, 1, 1, -13,.. be the sequence with all signs but one reversed: b(1)=a(1), b(n)=-a(n) for n<>1. Define the e.g.f. B(x) = 2*Sum_{n>=0} b(n)*(x/2)^n/n!. B(x) satisfies exp(B(x)) = 1 + 2*x - B(x). [Bernstein/Sloane S52]
Similarly, c(0)=1, c(n)=-a(n+1) are the alternating row sums of the second-order Eulerian numbers A340556, or c(n) = E2poly(n,-1). - Peter Luschny, Feb 13 2021
a(n) = Sum_{k=0..n-1} (n+k-1)!*Sum_{j=0..k} ((-1)^j/(k-j)!)*Sum_{i=0..j} ((1/i!)*Stirling1(n-i+j-1,j-i)/(n-i+j-1)!)*2^(n-j-1), n > 0, a(0)=1. - Vladimir Kruchinin, Nov 11 2012
From Sergei N. Gladkovskii, Nov 24 2012, Aug 22 2013: (Start)
Continued fractions:
G.f.: 2*x - x/G(0) where G(k) = 1 - 2*x*k + x*(k+1)/G(k+1).
G.f.: 2*x - 2*x/U(0) where U(k) = 1 + 1/(1 - 4*x*(k+1)/U(k+1)).
G.f.: A(x) = x/G(0) where G(k) = 1 - 2*x*(k+1) + x*(k+1)/G(k+1).
G.f.: 2*x - x*W(0) where W(k) = 1 + x*(2*k+1)/( x*(2*k+1) + 1/(1 + x*(2*k+2)/( x*(2*k+2) + 1/W(k+1)))). (End)
a(n) = 4^n * Sum_{i=1..n} Stirling2(n,i)*A013703(i)/2^(2*i+1). - Paolo Bonzini, Jun 23 2016
E.g.f.: 1/2*(LambertW(exp(4*x+1))-1). - Vladimir Kruchinin, Feb 18 2018
a(0) = 0; a(1) = 1; a(n) = 2 * a(n-1) - Sum_{k=1..n-1} binomial(n-1,k) * a(k) * a(n-k). - Ilya Gutkovskiy, Aug 28 2020

Extensions

More terms from James Sellers, Dec 07 1999
Reverted to converging factors definition by Paolo Bonzini, Jun 23 2016