A008517
Second-order Eulerian triangle T(n,k), 1 <= k <= n.
Original entry on oeis.org
1, 1, 2, 1, 8, 6, 1, 22, 58, 24, 1, 52, 328, 444, 120, 1, 114, 1452, 4400, 3708, 720, 1, 240, 5610, 32120, 58140, 33984, 5040, 1, 494, 19950, 195800, 644020, 785304, 341136, 40320, 1, 1004, 67260, 1062500, 5765500, 12440064, 11026296, 3733920, 362880
Offset: 1
Triangle begins:
1;
1, 2;
1, 8, 6;
1, 22, 58, 24;
1, 52, 328, 444, 120; ...
Row 3: There are three plane increasing 0-1-2-3 trees on 3 vertices. The number of colors are shown to the right of a vertex.
.
1o (2*t+1) 1o t*(t+2) 1o t*(t+2)
| / \ / \
| / \ / \
2o (2*t+1) 2o 3o 3o 2o
|
|
3o
.
The total number of trees is (2*t+1)^2 + t*(t+2) + t*(t+2) = 1 + 8*t + 6*t^2.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 270. [with offsets [0,0]: see A201637]
- Vincenzo Librandi, Rows n = 1..50, flattened
- Peter Bala, Diagonals of triangles with generating function exp(t*F(x)).
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
- J. F. Barbero G., J. Salas and E. J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. II. Applications, arXiv preprint arXiv:1307.5624 [math.CO], 2013.
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Generalized Stirling permutations and forests: Higher-order Eulerian and Ward numbers, Electronic Journal of Combinatorics 22(3) (2015), #P3.37.
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer (1992), pp. 24-48.
- J. D. Buckholtz, Concerning an approximation of Copson, Proc. Amer. Math. Soc., 14 (1963), 564-568.
- Naiomi T. Cameron and Kendra Killpatrick, Statistics on Linear Chord Diagrams, arXiv:1902.09021 [math.CO], 2019.
- L. Carlitz, The coefficients in an asymptotic expansion, Proc. Amer. Math. Soc. 16 (1965) 248-252.
- L. Carlitz, Some numbers related to the Stirling numbers of the first and second kind, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz., Numbers 544-576 (1976): 49-55. [Annotated scanned copy. The triangle is A008517.]
- T. Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms
- R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert W Function, Advances in Computational Mathematics, Vol. 5 (1996), pp. 329-359, formula (3.6), alternative link.
- Ming-Jian Ding and Jiang Zeng, Proof of an explicit formula for a series from Ramanujan's Notebooks via tree functions, arXiv:2307.00566 [math.CO], 2023.
- D. Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions. arXiv:math/0501052v2 [math.CA], 2005.
- Sen-Peng Eu, Tung-Shan Fu, and Yeh-Jong Pan, A refined sign-balance of simsun permutations, Eur. J. Comb. 36 (2014) 97-109
- W. Gautschi, Exponential integral ... for large values of n, Jrn. of Rsch. of the National Bureau of Standards, Vol. 62, No. 3, March 1959, Rsch. paper 2941. - _Tom Copeland_, Jan 02 2016
- I. Gessel and R. P. Stanley, Stirling polynomials, J. Combin. Theory, A 24 (1978), 24-33.
- J. Ginsburg, Note on Stirling's Numbers, Amer. Math. Monthly 35 (1928), no. 2, 77-80. - _David Callan_, Aug 27 2009
- Jim Haglund and Mirko Visontai, Stable multivariate Eulerian polynomials and generalized Stirling permutations, European Journal of Combinatorics, Volume 33, Issue 4, May 2012, pp. 477-487.
- M. Klazar, Twelve countings with rooted plane trees, European Journal of Combinatorics 18 (1997), 195-210; Addendum, 18 (1997), 739-740.
- Dmitry V. Kruchinin and Vladimir V. Kruchinin, A generating function for the Euler numbers of the second kind and its application, arXiv:1802.09003 [math.CO], 2018.
- Paul Levande, Two New Interpretations of the Fishburn Numbers and their Refined Generating Functions, arXiv:1006.3013 [math.CO], 2010.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 29.
- Peter Luschny, Second-order Eulerian numbers, A companion to A340556, Feb 2021.
- Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO], 2012. - From _N. J. A. Sloane_, Aug 21 2012
- S.-M. Ma, T. Mansour, and M. Schork. Normal ordering problem and the extensions of the Stirling grammar, arXiv preprint arXiv:1308.0169 [math.CO], 2013.
- S.-M. Ma, T. Mansour, The 1/k-Eulerian polynomials and k-Stirling permutations, arXiv preprint arXiv:1409.6525 [math.CO], 2014.
- O. J. Munch, Om potensproduktsummer [Norwegian, English summary], Nordisk Matematisk Tidskrift, 7 (1959), 5-19. [Annotated scanned copy]
- O. J. Munch, Om potensproduktsummer [ Norwegian, English summary ], Nordisk Matematisk Tidskrift, 7 (1959), 5-19.
- Andrew Elvey Price and Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
- M. A. Readdy, The pre-WDVV ring of physics and its topology, preprint 2002, The Ramanujan Journal, October 2005, Volume 10, Issue 2, pp 269-281.
- Grzegorz Rzadkowski and M Urlinska, A Generalization of the Eulerian Numbers, arXiv preprint arXiv:1612.06635, 2016
- C. D. Savage and G. Viswanathan, The 1/k-Eulerian polynomials, Elec. J. of Comb., Vol. 19, Issue 1, #P9 (2012). - From _N. J. A. Sloane_, Feb 06 2013
- M. D. Schmidt, Generalized j-Factorial Functions, Polynomials, and Applications , J. Int. Seq. 13 (2010), 10.6.7, Section 5.1.
- Umesh Shankar, Log-concavity of rows of triangular arrays satisfying a certain super-recurrence, arXiv:2508.12467 [math.CO], 2025. See p. 4.
- L. M. Smiley, Completion of a rational function sequence of Carlitz, arXiv:0006106 [math.CO], 2000.
- M. Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq. 14 (2011) # 11.9.7.
- Eric Weisstein's World of Mathematics, Second-Order Eulerian Triangle
- Wikipedia, Eulerian numbers of the second kind
For a (0,0) based version as used in 'Concrete Mathematics' and by Maple see
A201637. For a (0,0) based version which has this triangle as a subtriangle see
A340556.
-
with(combinat): A008517 := proc(n, m) local k: add((-1)^(n+k)* binomial(2*n+1, k)* stirling1(2*n-m-k+1, n-m-k+1), k=0..n-m) end: seq(seq(A008517(n, m), m=1..n), n=1..8);
# Johannes W. Meijer, Oct 16 2009, revised Nov 22 2012
A008517 := proc(n,k) option remember; `if`(n=1,`if`(k=0,1,0), A008517(n-1,k)* (k+1) + A008517(n-1,k-1)*(2*n-k-1)) end: seq(print(seq(A008517(n,k), k=0..n-1)), n=1..9);
# Peter Luschny, Apr 20 2011
-
a[n_, m_] = Sum[(-1)^(n + k)*Binomial[2 n + 1, k]*StirlingS1[2n-m-k+1, n-m-k+1], {k, 0, n-m}]; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 44]] (* Jean-François Alcover, May 18 2011, after Johannes W. Meijer *)
-
{T(n, k) = my(z); if( n<1, 0, z = 1 + O(x); for( k=1, n, z = 1 + intformal( z^2 * (z+y-1))); n! * polcoeff( polcoeff(z, n),k))}; /* Michael Somos, Oct 13 2002 */
-
{T(n,k)=polcoeff((1-x)^(2*n+1)*sum(j=0,2*n+1,j^(n+j)*x^j/j!*exp(-j*x +x*O(x^k))),k)} \\ Paul D. Hanna, Oct 31 2012
for(n=1,10,for(k=1,n,print1(T(n,k),", "));print(""))
-
T(n, m) = sum(k=0, n-m, (-1)^(n+k)*binomial(2*n+1, k)*stirling(2*n-m-k+1, n-m-k+1, 1)); \\ Michel Marcus, Dec 07 2021
-
@CachedFunction
def A008517(n, k):
if n==1: return 1 if k==0 else 0
return A008517(n-1,k)*(k+1)+A008517(n-1,k-1)*(2*n-k-1)
for n in (1..9): [A008517(n, k) for k in(0..n-1)] # Peter Luschny, Oct 31 2012
A340556
E2(n, k), the second-order Eulerian numbers with E2(0, k) = δ_{0, k}. Triangle read by rows, E2(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 8, 6, 0, 1, 22, 58, 24, 0, 1, 52, 328, 444, 120, 0, 1, 114, 1452, 4400, 3708, 720, 0, 1, 240, 5610, 32120, 58140, 33984, 5040, 0, 1, 494, 19950, 195800, 644020, 785304, 341136, 40320, 0, 1, 1004, 67260, 1062500, 5765500, 12440064, 11026296, 3733920, 362880
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 2;
[3] 0, 1, 8, 6;
[4] 0, 1, 22, 58, 24;
[5] 0, 1, 52, 328, 444, 120;
[6] 0, 1, 114, 1452, 4400, 3708, 720;
[7] 0, 1, 240, 5610, 32120, 58140, 33984, 5040;
[8] 0, 1, 494, 19950, 195800, 644020, 785304, 341136, 40320;
[9] 0, 1, 1004, 67260, 1062500, 5765500, 12440064, 11026296, 3733920, 362880.
To illustrate the generating function for row 3: The expansion of (1 - x)^7*(x*exp(-x) + 16*x^2*exp(-x)^2 + (243*x^3*exp(-x)^3)/2) gives the polynomial x + 8*x^2 + 6*x^3. The coefficients of this polynomial give row 3.
.
Stirling permutations of order 3 with exactly k descents: (When counting the descents one may assume an invisible '0' appended to the permutations.)
T[3, k=0]:
T[3, k=1]: 112233;
T[3, k=2]: 331122; 223311; 221133; 133122; 122331; 122133; 113322; 112332;
T[3, k=3]: 332211; 331221; 233211; 221331; 133221; 123321.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 270.
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Generalized Stirling permutations and forests: Higher-order Eulerian and Ward numbers, Electronic Journal of Combinatorics 22(3), 2015.
- Kenny Barrese, Jennifer Elder, Pamela E. Harris, and Anthony Simpson, Enumerating Flat Fubini Rankings, arXiv:2504.06466 [math.CO], 2025. Conjecture 4.4. p. 14.
- Brian Drake, An inversion theorem for labeled trees and some limits of areas under lattice paths (Example 1.10.1), Thesis, Brandeis Univ., Aug. 2008, p. 58.
- Sergi Elizalde, Descents on quasi-Stirling permutations, arXiv:2002.00985 [math.CO], 2020.
- I. Gessel and R. P. Stanley, Stirling polynomials, J. Combin. Theory, A 24, 24-33, 1978.
- Svante Janson, Plane recursive trees, Stirling permutations and an urn model, Fifth Colloquium on Mathematics and Computer Science, 541-547, Discrete Math. Theor. Comput. Sci. Proc., AI, 2008.
- Peter Luschny, A companion to A340556, A SageMath-Jupyter notebook, Feb. 2021.
- Peter Luschny, How are the Eulerian numbers of the first-order related to the Eulerian numbers of the second-order?, MathOverflow, Feb. 2021.
- Andrew Elvey Price and Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
- John Riordan, The blossoming of Schröder's fourth problem, Acta Math., 137 (1976), 1-16.
- G. Rzadkowski and M. Urlinska, A Generalization of the Eulerian Numbers, arXiv:1612.06635 [math.CO], 2016.
Indexing the second-order Eulerian numbers comes in three flavors:
A008517 (following Riordan and Comtet),
A201637 (following Graham, Knuth, and Patashnik) and this indexing, extending the definition of Gessel and Stanley. (
A008517 is the main entry of the numbers.) The corresponding triangles of the first-order Eulerian numbers are
A008292,
A173018, and
A123125.
Row reversed:
A163936 (with offset = 0).
-
# Using the recurrence:
E2 := proc(n, k) option remember;
if k = 0 and n = 0 then return 1 fi; if n < 0 then return 0 fi;
E2(n-1, k)*k + E2(n-1, k-1)*(2*n - k) end: seq(seq(E2(n, k), k = 0..n), n = 0..9);
# Using the row generating function:
E2egf := n -> (1-x)^(2*n+1)*add(k^(n+k)/k!*(x*exp(-x))^k, k=0..n);
T := (n, k) -> coeftayl(E2egf(n), x=0, k): seq(print(seq(T(n, j),j=0..n)), n=0..7);
# Using the built-in function:
E2 := (n, k) -> `if`(k=0, k^n, combinat:-eulerian2(n, k-1)):
# Using the compositional inverse (series reversion):
E2triangle := proc(N) local r, s, C; Order := N + 2;
s := solve(y = series(x - t*(exp(x) - 1), x), x):
r := n -> -n!*(t - 1)^(2*n - 1)*coeff(s, y, n); C := [seq(expand(r(n)), n = 1..N)];
seq(print(seq(coeff(C[n+1], t, k), k = 0..n)), n = 0..N-1) end: E2triangle(10);
-
T[n_, k_] := T[n, k] = If[k == 0, Boole[n == 0], If[n < 0, 0, k T[n - 1, k] + (2 n - k) T[n - 1, k - 1]]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
(* Via row polynomials: *)
E2poly[n_] := If[n == 0, 1,
Expand[Simplify[x (x - 1)^(2 n) D[((1 - x)^(1 - 2 n) E2poly[n - 1]), x]]]];
Table[CoefficientList[E2poly[n], x], {n, 0, 9}] // Flatten
(* Series reversion *)
Revert[gf_, len_] := Module[{S = InverseSeries[Series[gf, {x, 0, len + 1}], x]},
Table[CoefficientList[(n + 1)! (1 - t)^(2 n + 1) Coefficient[S, x, n + 1], t],
{n, 0, len}] // Flatten]; Revert[x + t - t Exp[x], 6]
-
E2poly(n) = if(n == 0, 1, x*(x-1)^(2*n)*deriv((1-x)^(1-2*n)*E2poly(n-1)));
{ for(n = 0, 9, print(Vecrev(E2poly(n)))) }
-
T(n, k) = sum(j=0, n-k, (-1)^(n-j)*binomial(2*n+1, j)*stirling(2*n-k-j+1, n-k-j+1, 1)); \\ Michel Marcus, Feb 11 2021
-
# See also link to notebook.
@cached_function
def E2(n, k):
if n < 0: return 0
if k == 0: return k^n
return k * E2(n - 1, k) + (2*n - k) * E2(n - 1, k - 1) # Peter Luschny, Mar 08 2025
A051711
a(0) = 1; for n > 0, a(n) = n!*4^n/2.
Original entry on oeis.org
1, 2, 16, 192, 3072, 61440, 1474560, 41287680, 1321205760, 47563407360, 1902536294400, 83711596953600, 4018156653772800, 208944145996185600, 11700872175786393600, 702052330547183616000, 44931349155019751424000
Offset: 0
W(exp(x)) = 1 + (x-1)/2 + (x-1)^2/16 - (x-1)^3/192 - ... .
-
[1] cat [2^(2*n-1)*Factorial(n): n in [1..30]]; // G. C. Greubel, Mar 06 2018
-
Join[{1},Table[(n! 4^n)/2,{n,20}]] (* Harvey P. Dale, Oct 05 2012 *)
-
a(n)=if(n<1,!n,4^n/2*n!)
A001664
Quadratic coefficient of the n-th converging polynomial of Weber functions.
Original entry on oeis.org
1, -6, 25, -60, -203, 3710, -21347, -50400, 2465969, -24201342, -14909791, 4154706556, -61829802067, 107889525510, 13926895008805, -296622934827816, 1387504872714793, 80367331405832714, -2381736125794455767, 19480923855903871284, 721535152036700012069, -29550684521199839783538
Offset: 2
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. Wynn, Converging factors for the Weber parabolic cylinder functions of complex argument, part Ia, part Ib, Proc. Konin. Ned. Akad. Weten., Series A, 66 (1963), 721-754 (two parts). In (45) the factor p_{r-2,2} should read p_{r-2,1}.
- P. Wynn, Converging factors for the Weber parabolic cylinder functions ... [Annotated scan of part 2 only]
-
# equation (47)
prs := proc(r,k)
if r = 0 then
1 ;
elif r = 1 then
-1+k ; # (38)
elif r =2 then
1-3*k+k^2 ;
end if;
end proc:
p := proc(r,s)
option remember ;
local k,a,lambda,mu,phi,theta ;
# theta := 0 ; # valid for Table VII
phi :=1 : # (30) for theta=0
a := 1/2 ; # specific in Table VII
lambda := 2*(a-1) ; # (15)
mu := (a-1/2)*(a-3/2) ; # (13)
if r = s then
return 1; # eq (42)
elif s > r or s <0 then
return 0 ;
elif r <=2 then
coeff(prs(r,k),k,s) ;
elif s = 0 then
# eq (46)
2*(phi+2)*procname(r,1) -8*procname(r,2)
+4*(4*r-lambda-2)*procname(r-1,1)
+2*(lambda*(phi+1)-2*(r-1)*phi-4*r)*procname(r-1,0)
-4*(mu-2*lambda*(r-1)+4*(r-1)^2)*procname(r-2,0) ;
return %/(phi+1) ;
elif s = 1 then
# eq (45)
# note that the 2nd index of the last p is wrong in the publication
4*(phi+2)*procname(r,2) -24*procname(r,3) # unreadable index is 3
+8*(4*r-lambda-2)*procname(r-1,2)
-8*procname(r-1,1)+2*(phi+2)*procname(r-1,0)
+2*(lambda*(phi+1)-2*(r-1)*phi-4*r)*procname(r-1,1)
-4*(lambda-4*r+4)*procname(r-2,0)
-4*(mu-2*lambda*(r-1)+4*(r-1)^2)*procname(r-2,1) ;
return %/(phi+1) ;
elif s= r-1 then
# eq (43)
2*(phi+2)*r*procname(r,r) -8*(r-1)*procname(r-1,r-1)
+2*(phi+2)*procname(r-1,r-2)+2*(lambda*(phi+1)-2*(r-1)*phi-4*r)*procname(r-1,r-1)
-4*procname(r-2,r-3)-4*(lambda-4*r+4)*procname(r-2,r-2) ;
return %/(phi+1) ;
else
# eq (44)
2*(s+1)*(phi+2)*procname(r,s+1) -4*(s+1)*(s+2)*procname(r,s+2)
+4*(4*r-lambda-2)*(s+1)*procname(r-1,s+1)-8*s*procname(r-1,s)
+2*(phi+2)*procname(r-1,s-1)+2*(lambda*(phi+1)-2*(r-1)*phi-4*r)*procname(r-1,s)
-4*procname(r-2,s-2)-4*(lambda-4*r+4)*procname(r-2,s-1)
-4*(mu-2*lambda*(r-1)+4*(r-1)^2)*procname(r-2,s) ;
return %/(phi+1) ;
end if;
end proc:
A001664 := proc(n)
p(n,2) ;
end proc:
seq(A001664(n),n=2..30) ; # R. J. Mathar, Jan 13 2025
A274447
Numerators in expansion of W(exp(x)) about x=1, where W is the Lambert function.
Original entry on oeis.org
1, 1, 1, -1, -1, 13, -47, -73, 2447, -16811, -15551, 1726511, -18994849, 10979677, 2983409137, -48421103257, 135002366063, 778870772857, -232033147779359, 1305952009204319, 58740282660173759, -1862057132555380307, 16905219421196907793, 527257187244811805207
Offset: 0
W(exp(x)) = 1 + (x-1)/2 + (x-1)^2/16 - (x-1)^3/192 - ...
- Alois P. Heinz, Table of n, a(n) for n = 0..446 (first 151 terms from G. C. Greubel)
- R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, On the Lambert W Function, Advances in Computational Mathematics, (5), 1996, pp. 329-359.
- R. M. Corless, D. J. Jeffrey and D. E. Knuth, A sequence of series for the Lambert W Function (section 2.2).
-
a:= n-> numer(coeftayl(LambertW(exp(x)), x=1, n)):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 08 2012
# For large n much faster is:
q := proc(n) if n=0 then 1 else add((-1)^k*combinat[eulerian2](n-1, k), k=0..n-1) fi end: A001662 := n -> numer(q(n)/n!):
seq(A001662(n), n=0..100): # Peter Luschny, Nov 13 2012
-
CoefficientList[ Series[ ProductLog[ Exp[1+x] ], {x, 0, 22}], x] // Numerator (* Jean-François Alcover, Oct 15 2012 *)
a[0] = 1; a[n_] := 1/n!*Sum[(n+k-1)!*Sum[(-1)^(j)/(k-j)!*Sum[1/i!* StirlingS1[n-i+j-1, j-i]/(n-i+j-1)!, {i, 0, j}]*2^(n-j-1), {j, 0, k}], {k, 0, n-1}] // Numerator; Array[a, 30, 0] (* Jean-François Alcover, Feb 13 2016, after Vladimir Kruchinin *)
-
a(n):=num(if n=0 then 1 else 1/n!*(sum((n+k-1)!*sum(((-1)^(j)/(k-j)!*sum((1/i!*stirling1(n-i+j-1, j-i))/(n-i+j-1)!, i, 0, j))*2^(n-j-1), j, 0, k), k, 0, n-1))); /* Vladimir Kruchinin, Nov 11 2012 */
-
@CachedFunction
def eulerian2(n, k):
if k==0: return 1
if k==n: return 0
return eulerian2(n-1, k)*(k+1)+eulerian2(n-1, k-1)*(2*n-k-1)
def q(n):
return add((-1)^k*eulerian2(n-1, k) for k in (0..n-1)) if n>0 else 1
A001662 = lambda n: (q(n)/factorial(n)).numerator()
[A001662(n) for n in (0..22)] # Peter Luschny, Nov 13 2012
A001663
Linear coefficient of the n-th converging polynomial of Weber functions (Erroneous version).
Original entry on oeis.org
1, -3, 7, -5, -93, 637, -1425, -22341
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A190015
Triangle T(n,k) for solving differential equation A'(x)=G(A(x)), G(0)!=0.
Original entry on oeis.org
1, 1, 2, 1, 6, 8, 1, 24, 42, 16, 22, 1, 120, 264, 180, 192, 136, 52, 1, 720, 1920, 1248, 540, 1824, 2304, 272, 732, 720, 114, 1, 5040, 15840, 10080, 8064, 18720, 22752, 9612, 7056, 10224, 17928, 3968, 2538, 3072, 240, 1, 40320, 146160, 92160, 70560, 32256, 207360, 249120, 193536, 73728, 61560, 144720, 246816, 101844, 142704, 7936, 51048, 110448, 34304, 8334, 11616, 494, 1
Offset: 0
Triangle begins:
1;
1;
2,1;
6,8,1;
24,42,16,22,1;
120,264,180,192,136,52,1;
720,1920,1248,540,1824,2304,272,732,720,114,1;
5040,15840,10080,8064,18720,22752,9612,7056,10224,17928,3968,2538,3072,240,1;
40320,146160,92160,70560,32256,207360,249120,193536,73728,61560,144720,246816, 101844,142704,7936,51048,110448,34304,8334,11616,494,1;
Example for n=5:
partitions of number 9 into 5 parts in lexicographic order:
[1,1,1,1,5]
[1,1,1,2,4]
[1,1,1,3,3]
[1,1,2,2,3]
[1,2,2,2,2]
a(5) = (24*g(0)^4*g(4) +42*g(0)^3*g(1)*g(3) +16*g(0)^3*g(2)^2 +22*g(0)^2*g(1)^2*g(2) +g(0)*g(1)^4)/5!.
-
/* array of triangle */
M:[1,1,2,1,6,8,1,24,42,16,22,1,120,264,180,192,136,52,1,720,1920,1248,540,1824,2304,272,732,720,114,1,5040,15840,10080,8064,18720,22752,9612,7056,10224,17928,3968,2538,3072,240,1,40320,146160,92160,70560,32256,207360,249120,193536,73728,61560,144720,246816,101844,142704,7936,51048,110448,34304,8334,11616,494,1];
/* function of triangle */
T(n,k):=M[sum(num_partitions(i),i,0,n-1)+k+1];
/* count number of partitions of n into m parts */
b(n,m):=if n
-
/* Find triangle */
Co(n,k):=if k=1 then a(n) else sum(a(i+1)*Co(n-i-1,k-1),i,0,n-k);
a(n):=if n=1 then 1 else 1/n*sum(Co(n-1,k)*x(k),k,1,n-1);
makelist(ratsimp(n!*a(n)),n,1,5);
/* Vladimir Kruchinin, Jun 15 2012 */
-
serlaplace( serreverse( intformal( 1 / sum(n=0, 9, eval(Str("g"n)) * x^n, x * O(x^9))))) /* Michael Somos, Oct 22 2014 */
A274448
Denominators in expansion of W(exp(x)) about x=1, where W is the Lambert function.
Original entry on oeis.org
1, 2, 16, 192, 3072, 61440, 1474560, 41287680, 1321205760, 47563407360, 1902536294400, 83711596953600, 4018156653772800, 208944145996185600, 11700872175786393600, 702052330547183616000, 44931349155019751424000, 235025518657026392064000, 219983885462976702971904000, 16718775295186229425864704000, 1337502023614898354069176320000
Offset: 0
W(exp(x)) = 1 +(x-1)/2+(x-1)^2/16-(x-1)^3/192-...
- R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, On the Lambert W Function, Advances in Computational Mathematics, (5), 1996, pp. 329-359.
- R. M. Corless, D. J. Jeffrey and D. E. Knuth, A sequence of series for the Lambert W Function (section 2.2).
-
a:= n-> denom(coeftayl(LambertW(exp(x)), x=1, n)):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 08 2012
-
CoefficientList[ Series[ ProductLog[ Exp[1+x] ], {x, 0, 22}], x] // Denominator (* Jean-François Alcover, Oct 15 2012 *)
A201636
Triangle read by rows, n>=0, k>=0, T(0,0) = 1, T(n,k) = Sum_{j=0..k} (C(n+k,k-j)*(-1)^(k-j)*2^(n-j)*Sum_{i=0..j} (C(n+j,i)*|S(n+j-i,j-i)|)), S = Stirling number of first kind.
Original entry on oeis.org
1, 0, 1, 0, 4, 3, 0, 24, 40, 15, 0, 192, 520, 420, 105, 0, 1920, 7392, 9520, 5040, 945, 0, 23040, 116928, 211456, 176400, 69300, 10395, 0, 322560, 2055168, 4858560, 5642560, 3465000, 1081080, 135135, 0, 5160960, 39896064, 117722880, 177580480, 150870720, 73153080, 18918900, 2027025
Offset: 0
[n\k 0, 1, 2, 3, 4, 5]
[0] 1,
[1] 0, 1,
[2] 0, 4, 3,
[3] 0, 24, 40, 15,
[4] 0, 192, 520, 420, 105,
[5] 0, 1920, 7392, 9520, 5040, 945,
-
A201636 := proc(n,k) if n=0 and k=0 then 1 else
add(binomial(n+k,k-j)*(-1)^(n+k-j)*2^(n-j)*
add(binomial(n+j,i)*stirling1(n+j-i,j-i),i=0..j),j=0..k) fi end:
for n from 0 to 8 do print(seq(A201636(n,k),k=0..n)) od;
-
T[0, 0] = 1; T[n_, k_] := T[n, k] = Sum[Binomial[n+k, k-j]*(-1)^(n+k-j)* 2^(n-j)*Sum[Binomial[n+j, i]*StirlingS1[n+j-i, j-i], {i, 0, j}], {j, 0, k}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* Jean-François Alcover, Jun 29 2019 *)
-
def A201636(n,k) :
if n==0 and k==0: return 1
return add(binomial(n+k,k-j)*(-1)^(k-j)*2^(n-j)*add(binomial(n+j,i)* stirling_number1(n+j-i,j-i) for i in (0..j)) for j in (0..k))
A380169
Table T(r,s) read by rows: the coefficient of [k^s] of the Wynn's r-th converging polynomial p_r(k) of Weber functions, 0<=s<=r.
Original entry on oeis.org
1, -1, 1, 1, -3, 1, 1, 7, -6, 1, -13, -5, 25, -10, 1, 47, -83, -60, 65, -15, 1, 73, 637, -203, -280, 140, -21, 1, -2447, -1425, 3710, 77, -910, 266, -28, 1, 16811, -22341, -21347, 13146, 2667, -2394, 462, -36, 1, 15551, 318149, -50400, -137435, 30135, 12999, -5460, 750, -45, 1, -1726511, -1415491, 2465969, 379940, -579590, 32109, 43659, -11220, 1155, -55
Offset: 0
The table starts
1
-1 1
1 -3 1
1 7 -6 1
-13 -5 25 -10 1
47 -83 -60 65 -15 1
73 637 -203 -280 140 -21 1
-2447 -1425 3710 77 -910 266 -28 1
16811 -22341 -21347 13146 2667 -2394 462 -36 1
15551 318149 -50400 -137435 30135 12999 -5460 750 -45 1
-1726511 -1415491 2465969 379940 -579590 32109 43659 -11220 1155 -55 1
- P. Wynn, Converging factors for the Weber parabolic cylinder functions of complex argument, part Ib, Proc. Konin. Ned. Akad. Weten., Series A, 66 (1963), 721-754 (two parts). Table VII.
Showing 1-10 of 10 results.
Comments