cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001713 Generalized Stirling numbers.

Original entry on oeis.org

1, 18, 245, 3135, 40369, 537628, 7494416, 109911300, 1698920916, 27679825272, 474957547272, 8572072384512, 162478082312064, 3229079010579072, 67177961946534528, 1460629706845766400, 33139181950164806400, 783398920650352012800, 19268391564147377318400
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=4,n=3) ~ exp(-x)/x^4*(1 - 18/x + 245/x^2 - 3135/x^3 + 40369/x^4 - 537628/x^5 + ...) leads to the sequence given above. See A163931 and A163934 for more information. - Johannes W. Meijer, Oct 20 2009
From Petros Hadjicostas, Jun 12 2020: (Start)
For nonnegative integers n, m and complex numbers a, b (with b <> 0), the numbers R_n^m(a,b) were introduced by Mitrinovic (1961) and Mitrinovic and Mitrinovic (1962) using slightly different notation.
These numbers are defined via the g.f. Product_{r=0..n-1} (x - (a + b*r)) = Sum_{m=0..n} R_n^m(a,b)*x^m for n >= 0.
As a result, R_n^m(a,b) = R_{n-1}^{m-1}(a,b) - (a + b*(n-1))*R_{n-1}^m(a,b) for n >= m >= 1 with R_0^0(a,b) = 1, R_1^0(a,b) = a, R_1^1(a,b) = 1, and R_n^m(a,b) = 0 for n < m.
With a = 0 and b = 1, we get the Stirling numbers of the first kind S1(n,m) = R_n^m(a=0, b=1) = A048994(n,m) for n, m >= 0.
We have R_n^m(a,b) = Sum_{k=0}^{n-m} (-1)^k * a^k * b^(n-m-k) * binomial(m+k, k) * S1(n, m+k) for n >= m >= 0.
For the current sequence, a(n) = R_{n+3}^3(a=-3, b=-1) for n >= 0. (End)

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nn = 23; t = Range[0, nn]! CoefficientList[Series[-Log[1 - x]^3/(6*(1 - x)^3), {x, 0, nn}], x]; Drop[t, 3] (* T. D. Noe, Aug 09 2012 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+3, 3)*3^k*stirling(n+3, k+3, 1)); \\ Michel Marcus, Jan 20 2016
    
  • PARI
    b(n) = prod(r=0, n+2, r+3);
    c(n) = sum(i=0, n+2, sum(j=i+1, n+2, sum(k=j+1, n+2, 1/((3+i)*(3+j)*(3+k)))));
    for(n=0, 18, print1(b(n)*c(n), ", ")) \\ Petros Hadjicostas, Jun 12 2020

Formula

E.g.f.: Sum_{n>=0} a(n)*x^(n+3)/(n+3)! = (log(1 - x)/(x - 1))^3/6. - Vladeta Jovovic, May 05 2003 [Edited by Petros Hadjicostas, Jun 13 2020]
a(n) = Sum_{k=0..n} (-1)^(n+k) * binomial(k+3, 3) * 3^k * Stirling1(n+3, k+3). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k) * Stirling1(n-k,i) * Product_{j=0..k-1} (-a-j), then a(n-3) = |f(n,3,3)| for n >= 3. - Milan Janjic, Dec 21 2008
From Petros Hadjicostas, Jun 12 2020: (Start)
a(n) = [x^3] Product_{r=0}^{n+2} (x + 3 + r) = (Product_{r=0}^{n+2} (r+3)) * Sum_{0 <= i < j < k <= n+2} 1/((3+i)*(3+j)*(3+k)).
Since a(n) = R_{n+3}^3(a=-3, b=-1), A001712(n) = R_{n+2}^2(a=-3,b=-1), and A001711(n) = R_{n+1}^1(a=-3, b=-1), the equation R_{n+3}^3(a=-3,b=-1) = R_{n+2}^2(a=-3,b=-1) + (n+5)*R_{n+2}^3(a=-3,b=-1) implies the following:
(i) a(n) = A001712(n) + (n+5)*a(n-1) for n >= 1.
(ii) a(n) = A001711(n) + (2*n+9)*a(n-1) - (n+4)^2*a(n-2) for n >= 2.
(iii) a(n) = (n+2)!/2 + 3*(n+4)*a(n-1) - (3*n^2+21*n+37)*a(n-2) + (n+3)^3*a(n-3) for n >= 3.
(iv) a(n) = 2*(2*n+7)*a(n-1) - (6*n^2+36*n+55)*a(n-2) + (2*n^2+10*n+13)*(2*n+5)*a(n-3) - (n+2)^4*a(n-4) for n >= 4. (End)

Extensions

More terms from Vladeta Jovovic, May 05 2003