cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A249572 Least positive integer whose decimal digits divide the plane into n+1 regions. Equivalently, least positive integer with n holes in its decimal digits.

Original entry on oeis.org

1, 4, 8, 48, 88, 488, 888, 4888, 8888, 48888, 88888, 488888, 888888, 4888888, 8888888, 48888888, 88888888, 488888888, 888888888, 4888888888, 8888888888, 48888888888, 88888888888, 488888888888, 888888888888, 4888888888888, 8888888888888, 48888888888888
Offset: 0

Views

Author

Rick L. Shepherd, Nov 01 2014

Keywords

Comments

Leading zeros are not permitted. Variations are possible depending upon whether 4 is considered "holey" (if not, replace each "4" with a "6") and whether nonnegative integers are permitted (a(2) becomes 0). In each case, all terms after the first could be considered "wholly holey," as could all terms of A001743 and A001744, as each digit contains a hole (loop). The analogous sequence of bits for base 2 is simply A011557, the powers of 10, read instead as binary numbers, i.e., as powers of two.

Examples

			From _Jon E. Schoenfield_, Nov 15 2014: (Start)
This sequence uses "holey" fours. So a(1)=4, because
. . . . . . . . . . . .       . . . . . . . . . . . .
.                     .       .                     .
.           XXXX      .       .    XX       XX      .
.          XX XX      .       .    XX       XX      .
.         XX  XX      .       .    XX       XX      .
.        XX   XX      .       .    XX       XX      .
.       XX    XX      .       .    XX       XX      .
.      XX     XX      .       .    XX       XX      .
.     XX      XX      .       .    XX       XX      .
.    XX       XX      .       .    XX       XX      .
.    XXXXXXXXXXXXX    .       .    XXXXXXXXXXXXX    .
.             XX      .       .             XX      .
.             XX      .       .             XX      .
.             XX      .       .             XX      .
.             XX      .       .             XX      .
.             XX      .       .             XX      .
.                     .       .                     .
.      "Holey" 4      .       .    "Non-holey" 4    .
. . . . . . . . . . . .       . . . . . . . . . . . . (End)
		

Crossrefs

The analogous sequence using 6 instead of 4 is A250256. - N. J. A. Sloane, Sep 27 2019

Programs

  • Magma
    I:=[1,4,8,48]; [n le 4 select I[n] else 10*Self(n-2)+8: n in [1..30]]; // Vincenzo Librandi, Nov 17 2014
    
  • Maple
    a:= n-> `if`(n=0, 1, parse(cat(4*(irem(n, 2, 'q')), 8$q))):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 01 2014
  • Mathematica
    LinearRecurrence[{1,10,-10},{1,4,8,48},50] (* Paolo Xausa, May 31 2023 *)
  • PARI
    A249572(n)=10^(n\2)*if(n%2,45-(n>1)*5,22)\45 \\ "(...,9-(n>1),4.4)\9" would be shorter but cause problems beyond realprecision. - M. F. Hasler, Jul 25 2015

Formula

a(n) = 10*a(n-2) + 8 for n >= 3.
From Chai Wah Wu, Dec 14 2016: (Start)
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n > 4.
G.f.: (10*x^3 - 6*x^2 + 3*x + 1)/((x - 1)*(10*x^2 - 1)). (End)
a(n) = (2/9)*(10^(n/2)*(4*((n+1) mod 2) + 11*sqrt(2/5)*(n mod 2)) - 4) for n >= 1. - Alan Michael Gómez Calderón, May 04 2025

Extensions

Offset corrected by Brady Haran, Nov 27 2018

A250256 Least positive integer whose decimal digits divide the plane into n regions (A249572 variant).

Original entry on oeis.org

1, 6, 8, 68, 88, 688, 888, 6888, 8888, 68888, 88888, 688888, 888888, 6888888, 8888888, 68888888, 88888888, 688888888, 888888888, 6888888888, 8888888888, 68888888888, 88888888888, 688888888888, 888888888888, 6888888888888, 8888888888888, 68888888888888
Offset: 1

Views

Author

Rick L. Shepherd, Nov 15 2014

Keywords

Comments

Equivalently, with offset 0, least positive integer with n holes in its decimal digits. Leading zeros are not permitted. Variation of A249572 with the numeral "4" considered open at the top, as it is often handwritten. See also the comments in A249572.
For n > 2, a(n) + a(n+1) divides the plane into 2 regions. For n > 1, a(2n) - a(2n-1) divides the plane into n+1 regions. For n >= 1, a(2n+1) - a(2n) divides the plane into n regions. - Ivan N. Ianakiev, Feb 23 2015

Examples

			The integer 68, whose decimal digits have 3 holes, divides the plane into 4 regions. No smaller positive integer does this, so a(4) = 68.
		

Crossrefs

Programs

  • Magma
    I:=[1,6,8,68]; [n le 4 select I[n] else 10*Self(n-2)+8: n in [1..30]]; // Vincenzo Librandi, Nov 15 2014
  • Mathematica
    Join[{1, 6, 8}, RecurrenceTable[{a[1]==68, a[2]==88, a[n]==10 a[n-2] + 8}, a, {n, 20}]] (* Vincenzo Librandi, Nov 16 2014 *)

Formula

a(n) = 10*a(n-2) + 8 for n >= 4.
From Chai Wah Wu, Jul 12 2016: (Start)
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n > 4.
G.f.: x*(10*x^3 - 8*x^2 + 5*x + 1)/((x - 1)*(10*x^2 - 1)). (End)
E.g.f.: (9 + 45*x - 40*cosh(x) + 31*cosh(sqrt(10)*x) - 40*sinh(x) + 4*sqrt(10)*sinh(sqrt(10)*x))/45. - Stefano Spezia, Aug 11 2025

A250257 Least nonnegative integer whose decimal digits divide the plane into n regions.

Original entry on oeis.org

1, 0, 8, 48, 88, 488, 888, 4888, 8888, 48888, 88888, 488888, 888888, 4888888, 8888888, 48888888, 88888888, 488888888, 888888888, 4888888888, 8888888888, 48888888888, 88888888888, 488888888888, 888888888888, 4888888888888, 8888888888888, 48888888888888
Offset: 1

Views

Author

Rick L. Shepherd, Nov 15 2014

Keywords

Comments

Equivalently, with offset 0, least nonnegative integer with n holes in its decimal digits. Leading zeros are not permitted. Identical to A249572 except that a(2) = 0, not 4. See also the comments in A249572.

Examples

			The integer 48, whose decimal digits have 3 holes, divides the plane into 4 regions. No smaller nonnegative integer does this, so a(4) = 48.
		

Crossrefs

Programs

  • Magma
    I:=[1,0,8,48,88]; [n le 5 select I[n] else 10*Self(n-2)+8: n in [1..30]]; // Vincenzo Librandi, Nov 15 2014
  • Mathematica
    Join[{1, 0, 8}, RecurrenceTable[{a[1]==48, a[2]==88, a[n]==10 a[n-2] + 8}, a, {n, 20}]] (* Vincenzo Librandi, Nov 16 2014 *)

Formula

a(n) = 10*a(n-2) + 8 for n >= 5.
From Chai Wah Wu, Jul 12 2016: (Start)
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n > 5.
G.f.: x*(-40*x^4 + 50*x^3 - 2*x^2 - x + 1)/((x - 1)*(10*x^2 - 1)). (End)

A250258 Least nonnegative integer whose decimal digits divide the plane into n regions (A250257 variant).

Original entry on oeis.org

1, 0, 8, 68, 88, 688, 888, 6888, 8888, 68888, 88888, 688888, 888888, 6888888, 8888888, 68888888, 88888888, 688888888, 888888888, 6888888888, 8888888888, 68888888888, 88888888888, 688888888888, 888888888888, 6888888888888, 8888888888888, 68888888888888
Offset: 1

Views

Author

Rick L. Shepherd, Nov 15 2014

Keywords

Comments

Equivalently, with offset 0, least nonnegative integer with n holes in its decimal digits. Leading zeros are not permitted. Variation of A250257 with the numeral "4" considered open at the top, as it is often handwritten. See also the comments in A249572.

Examples

			The integer 68, whose decimal digits have 3 holes, divides the plane into 4 regions. No smaller nonnegative integer does this, so a(4) = 68.
		

Crossrefs

Programs

  • Magma
    I:=[1,0,8,68,88]; [n le 5 select I[n] else 10*Self(n-2)+8: n in [1..40]]; // Vincenzo Librandi, Nov 16 2014
  • Mathematica
    Join[{1, 0, 8}, RecurrenceTable[{a[1]==68, a[2]==88, a[n]==10 a[n-2] + 8}, a, {n, 20}]] (* Vincenzo Librandi, Nov 16 2014 *)

Formula

a(n) = 10*a(n-2) + 8 for n >= 5.
a(n) = A250256(n), n<>2.
From Chai Wah Wu, Jul 12 2016: (Start)
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n > 5.
G.f.: x*(-60*x^4 + 70*x^3 - 2*x^2 - x + 1)/((x - 1)*(10*x^2 - 1)). (End)

A261449 Prime numbers whose decimal digits contain a total of two loops.

Original entry on oeis.org

83, 109, 149, 181, 199, 269, 281, 283, 349, 383, 401, 419, 439, 443, 461, 463, 467, 479, 491, 509, 569, 587, 599, 601, 607, 619, 641, 643, 647, 659, 661, 691, 709, 769, 787, 811, 821, 823, 827, 853, 857, 877, 907, 919, 929, 941, 947, 967, 991, 997, 1019, 1039
Offset: 1

Views

Author

Altug Alkan, Aug 19 2015

Keywords

Comments

Of the digits, 0 through 9, {0, 4, 6, 9} have one loop, 8 has two loops, and all the rest have none. - Robert G. Wilson v, Aug 20 2015

Examples

			83 is the first term of the sequence. The digit 8 contains two closed curves.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range@ 200, 2 == Total[{ 1,0, 0,0, 1,0, 1,0, 2,1}[[1 + IntegerDigits@ #]]]&] (* Giovanni Resta, Aug 19 2015 *)

Extensions

More terms from Giovanni Resta, Aug 19 2015
Showing 1-5 of 5 results.