A001754 Lah numbers: a(n) = n!*binomial(n-1,2)/6.
0, 0, 1, 12, 120, 1200, 12600, 141120, 1693440, 21772800, 299376000, 4390848000, 68497228800, 1133317785600, 19833061248000, 366148823040000, 7113748561920000, 145120470663168000, 3101950060425216000, 69337707233034240000, 1617879835437465600000
Offset: 1
References
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..300
Crossrefs
Programs
-
Magma
[Factorial(n)*Binomial(n-1, 2)/6: n in [1..25]]; // Vincenzo Librandi, Oct 11 2011
-
Maple
[seq(n!*binomial(n-1,2)/6, n=1..40)];
-
Mathematica
Table[(n-2)*(n-1)*n!/12, {n, 21}] (* Arkadiusz Wesolowski, Nov 26 2012 *) With[{nn=30},CoefficientList[Series[(x/(1-x))^3/6,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 04 2017 *)
-
Sage
[factorial(n-1)*binomial(n,3)/2 for n in (1..30)] # G. C. Greubel, May 10 2021
Formula
E.g.f.: ((x/(1-x))^3)/3!.
If we define f(n,i,x) = Sum_{k=i..n} (Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i)*x^(k-j)) then a(n+1) = (-1)^n*f(n,2,-4), n >= 2. - Milan Janjic, Mar 01 2009
a(n) = Sum_{k>=1} k * A260665(n,k). - Alois P. Heinz, Nov 14 2015
D-finite with recurrence (-n+5)*a(n) + (n-2)*(n-3)*a(n-1) = 0, n >= 4. - R. J. Mathar, Jan 06 2021
From Amiram Eldar, May 02 2022: (Start)
Comments