cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001795 Coefficients of Legendre polynomials.

Original entry on oeis.org

1, 1, 7, 33, 715, 4199, 52003, 334305, 17678835, 119409675, 1641030105, 11435320455, 322476036831, 2295919134019, 32968493968795, 238436656380769, 27767032438524099, 203236010537432691, 2989949596465113373
Offset: 0

Views

Author

Keywords

Comments

Numerators in expansion of sqrt(c(x)), c(x) the g.f. of A000108. - Paul Barry, Jul 12 2005
Coefficient of Legendre_0(x) when x^n is written in term of Legendre polynomials. - Michel Marcus, May 28 2013

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Divisor of A048990 and A065097.
Apparently a bisection of A002596.
Bisection of A099024.

Programs

  • Magma
    A001795:= func< n | Numerator(Catalan(2*n)/4^n) >;
    [A001795(n): n in [0..25]]; // G. C. Greubel, Apr 22 2025
    
  • Mathematica
    Table[Numerator[CatalanNumber[2*n]/4^n], {n,0,30}] (* G. C. Greubel, Apr 22 2025 *)
  • PARI
    my(x='x+O('x^30)); apply(numerator, Vec(((1-sqrt(1-4*x))/(2*x))^(1/2))) \\ Michel Marcus, Feb 04 2022
    
  • PARI
    a(n)=numerator(binomial(2*n-1/2, n)/(2*n+1)) \\ Tani Akinari, Oct 22 2024
    
  • SageMath
    def A001795(n): return numerator(catalan_number(2*n)/4^n)
    print([A001795(n) for n in range(31)]) # G. C. Greubel, Apr 22 2025

Formula

1/(sqrt(1-x) + sqrt(1+x)) = Sum_{n>=0} (a(n)/b(n))*x^(2*n) where b(n) is a power of 2. - Benoit Cloitre, Mar 12 2002
For n >= 1, 2^(n+1)*a(2^(n-1)) = A001791(2^n). - Vladimir Shevelev, Sep 05 2010
a(n) = numerator(binomial(2*n-1/2, n)/(2*n+1)). - Tani Akinari, Oct 22 2024
a(n) = numerator( A000108(2*n)/4^n ). - G. C. Greubel, Apr 22 2025

Extensions

More terms from Benoit Cloitre, Mar 12 2002