A001795 Coefficients of Legendre polynomials.
1, 1, 7, 33, 715, 4199, 52003, 334305, 17678835, 119409675, 1641030105, 11435320455, 322476036831, 2295919134019, 32968493968795, 238436656380769, 27767032438524099, 203236010537432691, 2989949596465113373
Offset: 0
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- H. E. Salzer, Coefficients for expressing the first twenty-four powers in terms of the Legendre polynomials, Math. Comp., 3 (1948), 16-18.
Crossrefs
Programs
-
Magma
A001795:= func< n | Numerator(Catalan(2*n)/4^n) >; [A001795(n): n in [0..25]]; // G. C. Greubel, Apr 22 2025
-
Mathematica
Table[Numerator[CatalanNumber[2*n]/4^n], {n,0,30}] (* G. C. Greubel, Apr 22 2025 *)
-
PARI
my(x='x+O('x^30)); apply(numerator, Vec(((1-sqrt(1-4*x))/(2*x))^(1/2))) \\ Michel Marcus, Feb 04 2022
-
PARI
a(n)=numerator(binomial(2*n-1/2, n)/(2*n+1)) \\ Tani Akinari, Oct 22 2024
-
SageMath
def A001795(n): return numerator(catalan_number(2*n)/4^n) print([A001795(n) for n in range(31)]) # G. C. Greubel, Apr 22 2025
Formula
1/(sqrt(1-x) + sqrt(1+x)) = Sum_{n>=0} (a(n)/b(n))*x^(2*n) where b(n) is a power of 2. - Benoit Cloitre, Mar 12 2002
For n >= 1, 2^(n+1)*a(2^(n-1)) = A001791(2^n). - Vladimir Shevelev, Sep 05 2010
a(n) = numerator(binomial(2*n-1/2, n)/(2*n+1)). - Tani Akinari, Oct 22 2024
a(n) = numerator( A000108(2*n)/4^n ). - G. C. Greubel, Apr 22 2025
Extensions
More terms from Benoit Cloitre, Mar 12 2002
Comments