cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001796 Coefficients of Legendre polynomials.

Original entry on oeis.org

1, 3, 27, 143, 3315, 20349, 260015, 1710855, 92116035, 631165425, 8775943605, 61750730457, 1755702867191, 12587970424449, 181858466731095, 1322239639929719, 154702037871777123, 1137023085979691001, 16789716964765636633
Offset: 0

Views

Author

Keywords

Comments

Numerators in expansion of c(x)^(3/2), c(x) the g.f. of A000108. - Gerald McGarvey, Oct 07 2008
Coefficient of Legendre_1(x) when x^n is written in term of Legendre polynomials. - Michel Marcus, May 28 2013

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A001796:= func< n | Numerator(3*(n+1)*Catalan(2*n+1)/(4^n*(2*n+3))) >;
    [A001796(n): n in [0..25]]; // G. C. Greubel, Apr 23 2025
    
  • Mathematica
    Table[Numerator[3*Binomial[2*n+1/2, n]/(2*n+3)], {n,0,30}] (* G. C. Greubel, Apr 23 2025 *)
  • PARI
    my(x='x+O('x^30)); apply(numerator, Vec(((1-sqrt(1-4*x))/(2*x))^(3/2))) \\ Michel Marcus, Feb 04 2022
    
  • PARI
    a(n)=numerator(3*binomial(2*n+1/2, n)/(2*n+3)) \\ Tani Akinari, Oct 31 2024
    
  • SageMath
    def A001796(n): return numerator(3*binomial(2*n+1/2, n)/(2*n+3))
    print([A001796(n) for n in range(31)]) # G. C. Greubel, Apr 23 2025

Formula

Numerators of g.f. ((1-sqrt(1-4*x))/(2*x))^(3/2). - Sean A. Irvine, Nov 27 2012
a(n) = numerator(3*binomial(2*n+1/2, n)/(2*n+3)). - Tani Akinari, Oct 31 2024

Extensions

More terms from Sean A. Irvine, Nov 27 2012