A001809 a(n) = n! * n(n-1)/4.
0, 0, 1, 9, 72, 600, 5400, 52920, 564480, 6531840, 81648000, 1097712000, 15807052800, 242853811200, 3966612249600, 68652904320000, 1255367393280000, 24186745110528000, 489781588488192000, 10400656084955136000, 231125690776780800000, 5364548928029491200000
Offset: 0
Examples
G.f. = x^2 + 9*x^3 + 72*x^4 + 600*x^5 + 5400*x^6 + 52920*x^7 + ...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
- Simon Altmann and Eduardo L. Ortiz, Editors, Mathematical and Social Utopias in France: Olinde Rodrigues and His Times, Amer. Math. Soc., 2005.
- David M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 90.
- Cornelius Lanczos, Applied Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 519.
- Edward M. Reingold, Jurg Nievergelt and Narsingh Deo, Combinatorial Algorithms, Prentice-Hall, 1977, section 7.1, p. 287.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Olry Terquem, Liouville's Journal, 1838.
Links
- T. D. Noe, Table of n, a(n) for n=0..100
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Eric Babson and Einar Steingrimsson, Generalized Permutation Patterns and Classification of the Mahonian Statistics, Séminaire Lotharingien de Combinatoire, B44b (2000), 18 pp.
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]
- FindStat - Combinatorial Statistic Finder, The Denert index of a permutation
- Dominique Foata and Marcel-Paul Schützenberger, Major Index and inversion number of permutations , Math. Nachr. 83 (1978), 143-159
- Dexter Jane L. Indong and Gilbert R. Peralta, Inversions of permutations in Symmetric, Alternating, and Dihedral Groups, JIS, Vol. 11 (2008), Article 08.4.3.
- Warren P. Johnson, Review of Altmann-Ortiz book, Amer. Math. Monthly, Vol. 114, No. 8 (2007), pp. 752-758.
- Cornelius Lanczos, Applied Analysis. (Annotated scans of selected pages)
- J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
- J. Ser, Les Calculs Formels des Séries de Factorielles. (Annotated scans of some selected pages)
- M. Stern, Aufgaben, Journal für die reine und angewandte Mathematik, Vol. 18 (1838), p. 100.
- Thotsaporn Thanatipanonda, Inversions and major index for permutations, Math. Mag., Vol. 77, No. 2 (April 2004), pp. 136-140.
- Eric Weisstein's World of Mathematics, Maximal Clique.
- Eric Weisstein's World of Mathematics, Transposition Graph.
- Index entries for sequences related to Laguerre polynomials.
Crossrefs
Programs
-
Magma
[Factorial(n)*n*(n-1)/4: n in [0..20]]; // Vincenzo Librandi, Jun 15 2015
-
Maple
A001809 := n->n!*n*(n-1)/4; with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card
=1)}, labeled]: subs(r=1, stack): seq(count(subs(r=2, ZL), size=m), m=0..19); # Zerinvary Lajos, Feb 07 2008 with (combstruct):with (combinat):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, labeled]; end: ZLL:=a(1):seq(count(ZLL, size=n)*binomial(n,2)/2, n=0..21); # Zerinvary Lajos, Jun 11 2008 -
Mathematica
Table[n! n (n - 1)/4, {n, 0, 18}] Table[n! Binomial[n, 2]/2, {n, 0, 20}] (* Eric W. Weisstein, Dec 01 2017 *) Coefficient[Table[n! LaguerreL[n, x], {n, 20}], x, 2] (* Eric W. Weisstein, Dec 01 2017 *)
-
PARI
{a(n) = n! * n * (n-1) / 4};
-
Sage
[factorial(m) * binomial(m, 2) / 2 for m in range(19)] # Zerinvary Lajos, Jul 05 2008
Formula
E.g.f.: (1/2)*x^2/(1-x)^3.
a(n) = a(n-1)*n^2/(n-2), n > 2; a(2)=1.
a(n) = n*a(n-1) + (n-1)!*n*(n-1)/2, a(1) = 0, a(2) = 1; a(n) = sum (first n! terms of A034968); a(n) = sum of the rises j of permutations (p(j)
If we define f(n,i,x) = Sum_{k=i..n} (Sum_{j=i..k}(C(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j))) then a(n)=(-1)^n*f(n,2,-3), (n>=2). - Milan Janjic, Mar 01 2009
a(n) = Sum_k k*A008302(n,k). - N. J. A. Sloane, Jan 20 2014
a(n+2) = n*n!*(n+1)^2 / 4 = A000142(n) * (A000292(n) + A000330(n))/2 = sum of the cumulative sums of all the permutations of numbers from 1 to n, where A000142(n) = n! and sequences A000292(n) and A000330(n) are sequences of minimal and maximal values of cumulative sums of all the permutations of numbers from 1 to n. - Jaroslav Krizek, Sep 13 2014
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=2} 1/a(n) = 12 - 4*e.
Extensions
More terms and new description from Michael Somos, May 19 2000
Simpler description from Emeric Deutsch, Oct 05 2006
Comments