cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001816 Coefficients of x^n in Hermite polynomial H_{n+4}.

Original entry on oeis.org

12, 120, 720, 3360, 13440, 48384, 161280, 506880, 1520640, 4392960, 12300288, 33546240, 89456640, 233963520, 601620480, 1524105216, 3810263040, 9413591040, 23011000320, 55710842880, 133706022912, 318347673600, 752458137600, 1766640844800, 4122161971200
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Table[Coefficient[HermiteH[n + 4, x], x, n], {n, 0, 25}] (* T. D. Noe, Aug 10 2012 *)
    LinearRecurrence[{10,-40,80,-80,32},{12,120,720,3360,13440},30] (* Harvey P. Dale, Jul 27 2025 *)
  • PARI
    a(n) = polcoeff(polhermite(n+4), n); \\ Michel Marcus, May 06 2022

Formula

a(n) = 12*A003472(n+4) = A060821(4+n, n).
G.f.: 12 ( 1 - 2 x )^(-5).
From Amiram Eldar, May 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 5/9 - 2*log(2)/3.
Sum_{n>=0} (-1)^n/a(n) = 18*log(3/2) - 65/9. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jan 29 2001