A001848 Crystal ball sequence for 6-dimensional cubic lattice.
1, 13, 85, 377, 1289, 3653, 8989, 19825, 40081, 75517, 134245, 227305, 369305, 579125, 880685, 1303777, 1884961, 2668525, 3707509, 5064793, 6814249, 9041957, 11847485, 15345233, 19665841, 24957661, 31388293, 39146185, 48442297, 59511829, 72616013, 88043969
Offset: 0
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 231.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- D. Bump, K. Choi, P. Kurlberg, and J. Vaaler, A local Riemann hypothesis, I pages 16 and 17
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- R. G. Stanton and D. D. Cowan, Note on a "square" functional equation, SIAM Rev., 12 (1970), 277-279.
- Index entries for crystal ball sequences
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Maple
for n from 1 to k do eval(4/45*n^6+4/15*n^5+14/9*n^4+8/3*n^3+196/45*n^2+46/15*n+1); od; A001848:=-(z+1)**6/(z-1)**7; # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
-
Mathematica
CoefficientList[Series[-(z + 1)^6/(z - 1)^7, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)
Formula
G.f.: (1+x)^6 /(1-x)^7.
a(n) = (4/45)*n^6 + (4/15)*n^5 + (14/9)*n^4 + (8/3)*n^3 + (196/45)*n^2 + (46/15)*n + 1. - S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Nov 25 2002
a(n) = Sum_{k=0..min(6,n)} 2^k * binomial(6,k)* binomial(n,k). See Bump et al. - Tom Copeland, Sep 05 2014
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = log(2) - 37/60 = log(2) - (1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6). - Peter Bala, Mar 23 2024
Comments