cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A199122 Number of partitions of n into terms of (2,3)-Ulam sequence, cf. A001857.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 11, 14, 16, 20, 23, 29, 33, 39, 47, 54, 64, 75, 86, 101, 117, 135, 155, 179, 204, 236, 268, 306, 349, 397, 450, 511, 577, 653, 736, 831, 934, 1050, 1179, 1322, 1478, 1657, 1848, 2065, 2302, 2562, 2852, 3172, 3518, 3909
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 03 2011

Keywords

Examples

			The first terms of A001857 are 2, 3, 5, 7, 8, 9, 13, 14, 18, 19, ...
a(10) = #{8+2, 7+3, 5+5, 5+3+2, 3+3+2+2, 2+2+2+2+2} = 6;
a(11) = #{9+2, 8+3, 7+2+2, 5+3+3, 5+2+2+2, 3+3+3+2, 3+2+2+2+2} = 7;
a(12) = #{9+3, 8+2+2, 7+5, 7+3+2, 5+5+2, 5+3+2+2, 3+3+3+3, 3+3+2+2+2, 6x2} = 9.
		

Crossrefs

Programs

  • Haskell
    a199122 = p a001857_list where
       p _ 0 = 1
       p us'@(u:us) m | m < u     = 0
                      | otherwise = p us' (m - u) + p us m
  • Mathematica
    nmax = 60;
    U = {2, 3};
    Do[AppendTo[U, k = Last[U]; While[k++; Length[DeleteCases[Intersection[U, k - U], k/2, 1, 1]] != 2]; k], {nmax}];
    a[n_] := IntegerPartitions[n, All, Select[U, # <= n &]] // Length;
    Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Oct 12 2021 *)

A199123 Number of partitions of n into distinct terms of (2,3)-Ulam sequence, cf. A001857.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 2, 2, 2, 3, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 8, 8, 9, 11, 10, 12, 14, 12, 17, 16, 17, 22, 19, 24, 25, 25, 30, 30, 33, 37, 37, 42, 45, 46, 52, 54, 57, 64, 66, 69, 79, 76, 87, 93, 91, 109, 105, 115, 126, 123, 140, 144, 151, 166, 169, 180, 193
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 03 2011

Keywords

Examples

			The first terms of A001857 are 2, 3, 5, 7, 8, 9, 13, 14, 18, 19, 24, ...
a(20) = #{18+2, 13+7, 13+5+2, 9+8+3, 8+7+5, 8+7+3+2} = 6;
a(21) = #{19+2, 18+3, 14+7, 14+5+2, 13+8, 13+5+3, 9+7+5, 9+7+3+2} = 8.
		

Crossrefs

Programs

  • Haskell
    a199123 = p a001857_list where
       p _  0 = 1
       p (u:us) m | m < u = 0
                  | otherwise = p us (m - u) + p us m

A002858 Ulam numbers: a(1) = 1; a(2) = 2; for n>2, a(n) = least number > a(n-1) which is a unique sum of two distinct earlier terms.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77, 82, 87, 97, 99, 102, 106, 114, 126, 131, 138, 145, 148, 155, 175, 177, 180, 182, 189, 197, 206, 209, 219, 221, 236, 238, 241, 243, 253, 258, 260, 273, 282, 309, 316, 319, 324, 339
Offset: 1

Views

Author

Keywords

Comments

Ulam conjectured that this sequence has density 0. However, calculations up to 6.759*10^8 (Jud McCranie) indicate that the density hovers near 0.074.
A plot of the first 3 million terms shows that they lie very close to the straight line 13.51*n, so even if we cannot prove it, we believe we now know how this sequence grows (see the plots in the links below). - N. J. A. Sloane, Sep 27 2006
After a few initial terms, the sequence settles into a regular pattern of dense clumps separated by sparse gaps, with period 21.601584+. This pattern continues up to at least a(n) = 5*10^6. (This comment is just a qualitative statement about the wavelike distribution of Ulam numbers, not meant to imply that every period includes Ulam numbers.) - David W. Wilson
_Don Knuth_ (Sep 26 2006) remarks that a(4952)=64420 and a(4953)=64682 (a gap of more than ten "dense clumps"); and there is a gap of 315 between a(18857) and a(18858).
1,2,3,47 are the only values of x < 6.759*10^8 such that x and x+1 are both Ulam numbers. - Jud McCranie, Jun 08 2001. This holds through the first 28 billion Ulam numbers - Jud McCranie, Jan 07 2016.
From Jud McCranie on David W. Wilson's illustration, Jun 20 2008: (Start)
The integers are shown from left to right, top to bottom, with a dot where there is an Ulam number. I think his plot is 216 wide. The local density of Ulam numbers goes in waves with a period of 21.6+, so his plot shows ten cycles.
When they are arranged that way you can see the waves. The crests of the density waves don't always have Ulam numbers there but the troughs are practically void of Ulam numbers. I noticed that the ratio of that period (21.6+) to the frequency of Ulam numbers (1 in 13.52) is very close to 8/5. (End)
a(50000000) = 675904508. - Jud McCranie, Feb 29 2012
a(100000000) = 1351856726. - Jud McCranie, Jul 31 2012
a(1000000000) = 13517664323. - Jud McCranie, Aug 28 2015
a(28000000000) = 378485625853 - Philip Gibbs & Jud McCranie, Sep 09 2015
3 (=1+2) and 131 (=62+69) are the only two Ulam numbers in the first 28 billion Ulam numbers that are the sum of two consecutive Ulam numbers. - Jud McCranie, Jan 09 2016
Named after the Polish-American scientist Stanislaw Ulam (1909-1984). - Amiram Eldar, Jun 08 2021

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.16.2.
  • Richard K. Guy, Unsolved Problems in Number Theory, C4.
  • Donald E. Knuth, The Art of Computer Programming, Volume 4A, Section 7.1.3.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 116.
  • Marvin C. Wunderlich, The improbable behavior of Ulam's summation sequence, pp. 249-257 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
  • David Zeitlin, Ulam's sequence {U_n}, U_1=1, U_2=2, is a complete sequence, Notices Amer. Math. Soc., 22 (No. 7, 1975), Abstract 75T-A267, p. A-707.

Crossrefs

Cf. A002859 (version beginning 1,3), A054540, A003667, A001857, A007300, A117140, A214603.
First differences: A072832, A072540.
Cf. A080287, A080288, A004280 (if distinct removed from definition).
See also the density plots in A080573 and A285884.

Programs

  • Haskell
    a002858 n = a002858_list !! (n-1)
    a002858_list = 1 : 2 : ulam 2 2 a002858_list
    ulam :: Int -> Integer -> [Integer] -> [Integer]
    ulam n u us = u' : ulam (n + 1) u' us where
       u' = f 0 (u+1) us'
       f 2 z _                         = f 0 (z + 1) us'
       f e z (v:vs) | z - v <= v       = if e == 1 then z else f 0 (z + 1) us'
                    | z - v `elem` us' = f (e + 1) z vs
                    | otherwise        = f e z vs
       us' = take n us
    -- Reinhard Zumkeller, Nov 03 2011
    
  • Julia
    function isUlam(u, n, h, i, r)
        h == 2 && return false
        ur = u[r]; ui = u[i]
        ur <= ui && return h == 1
        if ur + ui > n
            r -= 1
        elseif ur + ui < n
            i += 1
        else
            h += 1; i += 1; r -= 1
        end
        isUlam(u, n, h, i, r)
    end
    function UlamList(len)
        u = Array{Int, 1}(undef, len)
        u[1] = 1; u[2] = 2; i = 2; n = 2
        while i < len
            n += 1
            if isUlam(u, n, 0, 1, i)
                i += 1
                u[i] = n
            end
        end
        return u
    end
    println(UlamList(59)) # Peter Luschny, Apr 07 2019
    
  • Maple
    UlamList := proc(len) local isUlam, nextUlam, behead; behead := u -> u[2..numelems(u)]; isUlam := proc(n, h, u, r) local hu, tu, hr, tr; hu := u[1]; hr := r[1]; if h = 2 then return false fi; if hr <= hu then return evalb(h = 1) fi; if (hr + hu) = n then tu := behead(u); tr := behead(r); return isUlam(n, h+1, tu, tr) fi; if (hr + hu) < n then tu := behead(u): return isUlam(n, h, tu, r) fi; tr := behead(r); isUlam(n, h, u, tr) end: nextUlam := proc(n, u, r) if isUlam(n, 0, u, r) then if nops(u) = len-1 then return [op(u), n] fi; nextUlam(n+1, [op(u), n], [n, op(r)]) else nextUlam(n+1, u, r) fi end: nextUlam(3, [1, 2], [2, 1]) end:
    UlamList(59); # Peter Luschny, Apr 05 2019
  • Mathematica
    Ulam4Compiled = Compile[{{nmax, _Integer}, {init, _Integer, 1}, {s, _Integer}}, Module[{ulamhash = Table[0, {nmax}], ulam = init}, ulamhash[[ulam]] = 1; Do[ If[Quotient[Plus @@ ulamhash[[i - ulam]], 2] == s, AppendTo[ulam, i]; ulamhash[[i]] = 1], {i, Last[init] + 1, nmax}]; ulam]]; ulams = Ulam4Compiled[355, {1, 2}, 1]
    (* Second program: *)
    ulams = {1, 2}; Do[AppendTo[ulams, n = Last[ulams]; While[n++; Length[DeleteCases[Intersection[ulams, n - ulams], n/2, 1, 1]] != 2]; n], {100}]; ulams (* Jean-François Alcover, Sep 08 2011 *)
    findUlams[s_List, j_Integer] := Block[{k = s[[-1]] + 1, ss = Plus @@@ Subsets[s, {j}]}, While[ Count[ss, k] != 1, k++]; Append[s, k]]; ulams = Nest[findUlams[#, 2] &, {1, 2}, 70] (* Robert G. Wilson v, Jul 05 2014 *)
  • PARI
    aupto(N)= my(seen=vector(N), U=[]); seen[1]=seen[2]=1; for(i=1,N, if(1==seen[i], for(j=1,#U, my(sum=i+U[j]); if(sum>N, break); seen[sum]++); U=concat(U,i))); U \\ Ruud H.G. van Tol, Dec 29 2022
  • Python
    def isUlam(n, h, u, r):
        if h == 2: return False
        hu = u[0]; hr = r[0]
        if hr <= hu: return h == 1
        if hr + hu > n: r = r[1:]
        elif hr + hu < n: u = u[1:]
        else: h += 1; r = r[1:]; u = u[1:]
        return isUlam(n, h, u, r)
    def UlamList(length):
        u = [1, 2]; r = [2, 1]; n = 2
        while len(u) < length:
            n += 1
            if isUlam(n, 0, u[:], r[:]):
                u.append(n); r.insert(0, n)
        return u
    print(UlamList(59)) # Peter Luschny, Apr 06 2019
    

Extensions

More terms from Jud McCranie

A135737 Ulam type (1-additive) sequences u[1]=2, u[2]=2n+1, u[k+1] is least unique sum u[i]+u[j]>u[k], 1<=i

Original entry on oeis.org

2, 3, 2, 5, 5, 2, 7, 7, 7, 2, 8, 9, 9, 9, 2, 9, 11, 11, 11, 11, 2, 13, 12, 13, 13, 13, 13, 2, 14, 13, 15, 15, 15, 15, 15, 2, 18, 15, 16, 17, 17, 17, 17, 17, 2, 19, 19, 17, 19, 19, 19, 19, 19, 19, 2, 24, 23, 19, 20, 21, 21, 21, 21, 21, 21, 2, 25, 27, 21, 21, 23, 23, 23, 23, 23, 23, 23
Offset: 1

Views

Author

M. F. Hasler, Nov 26 2007

Keywords

Comments

Any of the sequences u=U(2,2n+1) has u[1]=2 and u[n+4]=4n+4; in between these there are the odd numbers 2n+1,...,4n-3. For n>1 there are no other even terms and the sequence of first differences becomes periodic for k>=t (transient phase), such that u[k] = u[k-floor((k-t)/p)*p] + floor((k-t)/p)*d, where p is the period (cf. A100729) and d the fundamental difference (cf. A100730). See the cross-references, especially A002858, for more information.

Examples

			The sequence contains the terms of the table T[n,k] = U(2,2n+1)[k], read by antidiagonals: a[1]=T[1,1]=2, a[2]=T[1,2]=3, a[3]=T[2,1]=2, a[4]=T[1,3]=5,...
n=1: U(2,3)= 2, 3, 5, 7, 8, 9,13,14...
n=2: U(2,5)= 2, 5, 7, 9,11,12,...
n=3: U(2,7)= 2, 7, 9,11,13,...
n=4: U(2,9)= 2, 9,11,...
		

Crossrefs

Cf. A001857 = U(2, 3) = row 1, A007300 = U(2, 5) = row 2, A003668 = U(2, 7) = row 3; A100729-A100730 (period).
Cf. A002858 = U(1, 2): this would be row 0, with u[1], u[2] exchanged.
See also: A002859 = U(1, 3), A003666 = U(1, 4), A003667 = U(1, 5).

Programs

  • PARI
    ulam(a,b,Nmax=30,i)=a=[a,b]; b=[a[1]+b]; for( k=3,Nmax, i=1; while(( i<#b && b[i]==b[i+1] && i+=2 ) || ( i>1 && b[i]==b[i-1] && i++),); a=concat(a,b[i]); b=vecsort(concat(vecextract(b,Str("^..",i)),vector(k-1,j,a[k]+a[j]))); i=0; for(j=1,#b-2, if( b[j]==b[j+2], i+=1<A135737(Nmax=100)=local(T=vector(sqrtint(Nmax*2)+1,n, ulam(2,2*n+1, sqrtint(Nmax*2)+2-n)),i,j); vector(Nmax,k,if(j>1,T[i++ ][j-- ],j=i+1;T[i=1][j]))

A100729 Period of the first difference of Ulam 1-additive sequence U(2,2n+1).

Original entry on oeis.org

32, 26, 444, 1628, 5906, 80, 126960, 380882, 2097152, 1047588, 148814, 8951040, 5406720, 242, 127842440, 11419626400, 12885001946, 160159528116, 687195466408, 6390911336402, 11728121233408, 20104735604736
Offset: 2

Views

Author

Ralf Stephan, Dec 03 2004

Keywords

Comments

It was proved by Akeran that a(2^k-1) = 3^(k+1) - 1.
Note that a(n)=2^(2n+1) as soon as A100730(n)=2^(2n+3)-2, that happens for n=(m-2)/2 with m>=6 being an even element of A073639.

Examples

			For k=2, we have a(3)=3^3-1=26.
		

Crossrefs

Cf. A100730 for the fundamental difference, A001857 for U(2, 3), A007300 for U(2, 5), A003668 for U(2, 7).
Cf. also A006844.

Extensions

a(3) corrected from 25 to 26 by Hugo van der Sanden and Bertram Felgenhauer (int-e(AT)gmx.de), Nov 11 2007
More terms from Balakrishnan V (balaji.iitm1(AT)gmail.com), Nov 15 2007
a(21..31) and b-file from Max Alekseyev, Dec 01 2007

A100730 Fundamental difference of Ulam 1-additive sequence starting U(2,2n+1).

Original entry on oeis.org

126, 126, 1778, 6510, 23622, 510, 507842, 1523526, 8388606, 4194302, 597870, 35791394, 21691754, 2046, 511305630, 45678505642, 51539607546, 640638112422, 2748779069430, 25563645345606, 46912496118442, 80418967640942
Offset: 2

Views

Author

Ralf Stephan, Dec 03 2004

Keywords

Crossrefs

Cf. A100729 for the period, A001857 for U(2, 3), A007300 for U(2, 5), A003668 for U(2, 7).

Formula

a(n) = 2 * A046932(2*n+2)

Extensions

2 more terms from Balakrishnan V (balaji.iitm1(AT)gmail.com), Nov 15 2007
Further new terms and b-file from Max Alekseyev, Dec 01 2007
b-file extended by Max Alekseyev, Aug 17 2015

A078425 Primes in "Ulam's Prime sequence". A prime is in the sequence iff p+1 can be expressed in exactly 1 way as the sum of 2 previous distinct primes.

Original entry on oeis.org

3, 5, 7, 11, 13, 19, 29, 41, 43, 59, 83, 89, 107, 109, 127, 139, 157, 163, 173, 199, 211, 223, 257, 271, 277, 293, 307, 331, 347, 367, 397, 421, 443, 457, 491, 541, 557, 587, 601, 631, 691, 761, 769, 821, 911, 941, 971, 991, 1009, 1033, 1103, 1129, 1153, 1201
Offset: 1

Views

Author

Jon Perry, Dec 29 2002

Keywords

Comments

a(1) = 3, a(2) = 5; for n >= 3, a(n) is smallest prime which is uniquely a(j) + a(k) - 1, with 1<= j < k < n.
Is the (3,5) sequence finite or infinite? Note that (3,7) as a starting sequence has only 2 terms and (7,11) yields 7, 11, 17, 23, 29 only. Equally using -1 as a rule creates more variants.
The sequence continues at least up to a(2227) = 400031.
After about 500 terms, the graph of this sequences appears almost linear. - T. D. Noe, Jan 20 2008

Examples

			a(3)=7 as 8=3+5. a(4)=11 as 12=5+7 (and nothing else).
		

Crossrefs

Programs

  • PARI
    v=vector(1220);vc=2;v[1]=3;v[2]=5; forprime (p=7,1220,p1=p+1;pc=0;fl=0;for (i=1,vc-1, for (j=i+1,vc,if (v[i]+v[j]==p1,pc++);if (pc>1,fl=1);if (fl,break));if (fl,break));if (pc==0,fl=1);if (!fl,vc++;v[vc]=p));print(vecextract(v,concat("1..",vc)))

Extensions

Edited and extended by Klaus Brockhaus, Apr 14 2005
Showing 1-7 of 7 results.