cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001869 Number of n-bead necklaces with 5 colors.

Original entry on oeis.org

1, 5, 15, 45, 165, 629, 2635, 11165, 48915, 217045, 976887, 4438925, 20346485, 93900245, 435970995, 2034505661, 9536767665, 44878791365, 211927736135, 1003867701485, 4768372070757, 22706531350485, 108372083629275, 518301258916445
Offset: 0

Views

Author

Keywords

Comments

From Richard L. Ollerton, May 07 2021: (Start)
Here, as in A000031, turning over is not allowed.
(1/n) * Dirichlet convolution of phi(n) and 5^n, n>0. (End)

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 162.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.112(a).

Crossrefs

Column 5 of A075195.
Cf. A054612.

Programs

  • Mathematica
    CoefficientList[Series[1-Sum[EulerPhi[i] Log[1-5*x^i]/i,{i,1,mx}],{x,0,mx}],x] (* Herbert Kociemba, Nov 01 2016 *)
    k=5; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/n, {n, 1, 30}], 1] (* Robert A. Russell, Sep 21 2018 *)
  • PARI
    a(n) = if (n, sumdiv(n, d, eulerphi(d)*5^(n/d))/n, 1); \\ Michel Marcus, Nov 01 2016

Formula

a(n) = (1/n)*Sum_{d|n} phi(d)*5^(n/d), n > 0.
G.f.: 1 - Sum_{n>=1} phi(n)*log(1 - 5*x^n)/n. - Herbert Kociemba, Nov 01 2016
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} 5^gcd(n,k). - Ilya Gutkovskiy, Apr 17 2021
a(0) = 1; a(n) = (1/n)*Sum_{k=1..n} 5^(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021