cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001871 Expansion of 1/(1 - 3*x + x^2)^2.

Original entry on oeis.org

1, 6, 25, 90, 300, 954, 2939, 8850, 26195, 76500, 221016, 632916, 1799125, 5082270, 14279725, 39935214, 111228804, 308681550, 853904015, 2355364650, 6480104231, 17786356776, 48715278000, 133167004200, 363372003625, 989900286774
Offset: 0

Views

Author

Keywords

Comments

Convolution of A001906(n), n >= 1 (even-indexed Fibonacci numbers) with itself.
A001787 and this sequence arise in counting ordered trees of height at most k where only the rightmost branch at the root actually achieves this height and the count is by the number of edges, with k = 3 for A001787 and k = 4 for this sequence.
Gives the number of 3412-avoiding permutations containing exactly one subsequence of type 321. - Dan Daly (ddaly(AT)du.edu), Apr 24 2008

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A001870 (one half of odd-indexed A001629(n), n >= 2, Fibonacci convolution).

Programs

  • Magma
    I:=[1, 6, 25, 90]; [n le 4 select I[n] else 6*Self(n-1)-11*Self(n-2)+6*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 10 2012
    
  • Maple
    f:= gfun:-rectoproc({a(n)=6*a(n-1)-11*a(n-2)+6*a(n-3)-a(n-4),
    a(0)=1,a(1)=6,a(2)=25,a(3)=90},a(n),remember):
    map(f, [$0..50]); # Robert Israel, May 05 2017
    # alternative
    A001871 := proc(n)
        option remember ;
        if n <= 3 then
            op(n+1,[1,6,25,90]) ;
        else
            6*procname(n-1)-11*procname(n-2)+6*procname(n-3)-procname(n-4) ;
        end if;
    end proc:
    seq(A001871(n),n=0..10) ; # R. J. Mathar, Dec 16 2024
  • Mathematica
    CoefficientList[Series[1/(1-3x+x^2)^2,{x,0,40}],x] (* Vincenzo Librandi, Jun 10 2012 *)
  • PARI
    a(n)=((4*n+2)*fibonacci(2*n)+(7*n+5)*fibonacci(2*n+1))/5
    
  • PARI
    Vec(1/(1-3*x+x^2)^2 + O(x^100)) \\ Altug Alkan, Oct 31 2015

Formula

a(n) = (2*(2*n+1)*F(2*(n+1))+3*(n+1)*F(2*n+1))/5 with F(n) = A000045 (Fibonacci numbers).
a(n) = -a(-4-n) = ((4*n+2)*F(2*n) + (7*n+5)*F(2*n+1))/5 with F(n) = A000045 (Fibonacci numbers).
a(n) = (2*a(n-1) + (n+1)*F(2n+4))/3, where F(n) = A000045 (Fibonacci numbers). - Emeric Deutsch, Oct 08 2002
G.f.: 1/(1 - 3*x + x^2)^2. - Simon Plouffe in his 1992 dissertation
a(n) = (Sum_{k=0..n} S(k, 3)*S(n-k, 3)), where S(n, x) = U(n, x/2) is the n-th Chebyshev polynomial of the 2nd kind, A049310. - Paul Barry, Nov 14 2003
a(n) = Sum_{k=1..n+1} F(2k)*F(2(n-k+2)), where F(k) is the k-th Fibonacci number. - Dan Daly (ddaly(AT)du.edu), Apr 24 2008
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4). - Vincenzo Librandi, Mar 14 2011
a(n) = 2*A001870(n) - A238846(n). - Philippe Deléham, Mar 06 2014
a(n) ~ (7 + 3*sqrt(5))*n*cos(n*arccos(3/2))/5. - Stefano Spezia, Mar 29 2022
From Peter Bala, Nov 05 2024: (Start)
a(n) = Sum_{k = 0..n} (n + 2*k + 1)*binomial(n+k, 2*k).
a(n) = (n+1) * hypergeom([-n, n+1, (n+3)/2], [1/2, (n+1)/2], -1/4).
Second-order recurrence: n*a(n) = 3*(n + 1)*a(n-1) - (n + 2)*a(n-2) with a(0) = 1 and a(1) = 6. (End)
E.g.f.: exp(3*x/2)*(5*(5 + 18*x)*cosh(sqrt(5)*x/2) + sqrt(5)*(9 + 40*x)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Mar 04 2025

Extensions

Additional comments from Wolfdieter Lang, Apr 07 2000