cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001873 Convolved Fibonacci numbers.

Original entry on oeis.org

1, 5, 20, 65, 190, 511, 1295, 3130, 7285, 16435, 36122, 77645, 163730, 339535, 693835, 1399478, 2790100, 5504650, 10758050, 20845300, 40075630, 76495450, 145052300, 273381350, 512347975, 955187033, 1772132390, 3272875935, 6018885570, 11024814945, 20118711993
Offset: 0

Views

Author

Keywords

Comments

a(n) = (((-i)^n)/4!)*(d^4/dx^4)S(n+4,x)|A049310%20for%20the%20S-polynomials.%20-%20_Wolfdieter%20Lang">{x=i}, where i is the imaginary unit. Fourth derivative of Chebyshev S(n+4,x) polynomial evaluated at x=i multiplied by ((-i)^n)/4!. See A049310 for the S-polynomials. - _Wolfdieter Lang, Apr 04 2007
a(n) = number of weak compositions of n in which exactly 4 parts are 0 and all other parts are either 1 or 2. - Milan Janjic, Jun 28 2010

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    a:= n-> (Matrix(10, (i, j)-> `if`(i=j-1, 1, `if`(j=1, [5, -5, -10, 15, 11, -15, -10, 5, 5, 1][i], 0 )))^n)[1, 1]: seq(a(n), n=0..40); # Alois P. Heinz, Aug 15 2008
  • Mathematica
    nn = 30; CoefficientList[Series[1/(1 - x - x^2)^5, {x, 0, nn}], x] (* T. D. Noe, Aug 10 2012 *)
    LinearRecurrence[{5,-5,-10,15,11,-15,-10,5,5,1},{1,5,20,65,190,511,1295,3130,7285,16435},40] (* Harvey P. Dale, Aug 10 2021 *)
  • Maxima
    a[n]:=if n<2 then 4*n+1 else (4/n+1)*a[n-1]+(8/n+1)*a[n-2];
    makelist(a[n],n,0,50); /* Tani Akinari, Sep 14 2023 */

Formula

G.f.: 1/(1-x-x^2)^5.
From Wolfdieter Lang, Nov 29 2002: (Start)
a(n) = Sum_{m=0.. floor(n/2)} binomial(4+n-m, 4)*binomial(n-m, m).
a(n) = ((1368 + 970*n + 215*n^2 + 15*n^3)*(n+1)*F(n+2) + 2*(408 + 305*n + 70*n^2 + 5*n^3)*(n+2)*F(n+1))/(4!*5^3), with F(n) = A000045(n). (End)
a(n) = F''''(n+4, 1)/24, i.e., 1/24 times the 4th derivative of the (n+4)th Fibonacci polynomial evaluated at 1. - T. D. Noe, Jan 18 2006
Recurrence: a(n) = 5*a(n-1) - 5*a(n-2) - 10*a(n-3) + 15*a(n-4) + 11*a(n-5) - 15*a(n-6) - 10*a(n-7) + 5*a(n-8) + 5*a(n-9) + a(n-10). - Fung Lam, May 11 2014
For n > 1, a(n) = (4/n+1)*a(n-1)+(8/n+1)*a(n-2). - Tani Akinari, Sep 14 2023

Extensions

More terms from Wolfdieter Lang, Nov 29 2002