A001873 Convolved Fibonacci numbers.
1, 5, 20, 65, 190, 511, 1295, 3130, 7285, 16435, 36122, 77645, 163730, 339535, 693835, 1399478, 2790100, 5504650, 10758050, 20845300, 40075630, 76495450, 145052300, 273381350, 512347975, 955187033, 1772132390, 3272875935, 6018885570, 11024814945, 20118711993
Offset: 0
Keywords
References
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Verner E. Hoggatt, Jr. and Marjorie Bicknell-Johnson, Fibonacci convolution sequences, Fib. Quart., 15 (1977), 117-122.
- Pieter Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO], 2003.
- Mihai Prunescu and Lorenzo Sauras-Altuzarra, On the representation of C-recursive integer sequences by arithmetic terms, arXiv:2405.04083 [math.LO], 2024. See p. 18.
- Paul R. Stein and Michael S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
- Paul R. Stein and Michael S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers [Corrected annotated scanned copy]
- Michael S. Waterman, Home Page (contains copies of his papers)
- Index entries for linear recurrences with constant coefficients, signature (5,-5,-10,15,11,-15,-10,5,5,1).
Programs
-
Maple
a:= n-> (Matrix(10, (i, j)-> `if`(i=j-1, 1, `if`(j=1, [5, -5, -10, 15, 11, -15, -10, 5, 5, 1][i], 0 )))^n)[1, 1]: seq(a(n), n=0..40); # Alois P. Heinz, Aug 15 2008
-
Mathematica
nn = 30; CoefficientList[Series[1/(1 - x - x^2)^5, {x, 0, nn}], x] (* T. D. Noe, Aug 10 2012 *) LinearRecurrence[{5,-5,-10,15,11,-15,-10,5,5,1},{1,5,20,65,190,511,1295,3130,7285,16435},40] (* Harvey P. Dale, Aug 10 2021 *)
-
Maxima
a[n]:=if n<2 then 4*n+1 else (4/n+1)*a[n-1]+(8/n+1)*a[n-2]; makelist(a[n],n,0,50); /* Tani Akinari, Sep 14 2023 */
Formula
G.f.: 1/(1-x-x^2)^5.
From Wolfdieter Lang, Nov 29 2002: (Start)
a(n) = Sum_{m=0.. floor(n/2)} binomial(4+n-m, 4)*binomial(n-m, m).
a(n) = ((1368 + 970*n + 215*n^2 + 15*n^3)*(n+1)*F(n+2) + 2*(408 + 305*n + 70*n^2 + 5*n^3)*(n+2)*F(n+1))/(4!*5^3), with F(n) = A000045(n). (End)
a(n) = F''''(n+4, 1)/24, i.e., 1/24 times the 4th derivative of the (n+4)th Fibonacci polynomial evaluated at 1. - T. D. Noe, Jan 18 2006
Recurrence: a(n) = 5*a(n-1) - 5*a(n-2) - 10*a(n-3) + 15*a(n-4) + 11*a(n-5) - 15*a(n-6) - 10*a(n-7) + 5*a(n-8) + 5*a(n-9) + a(n-10). - Fung Lam, May 11 2014
For n > 1, a(n) = (4/n+1)*a(n-1)+(8/n+1)*a(n-2). - Tani Akinari, Sep 14 2023
Extensions
More terms from Wolfdieter Lang, Nov 29 2002
Comments