cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001875 Convolved Fibonacci numbers.

Original entry on oeis.org

1, 7, 35, 140, 490, 1554, 4578, 12720, 33705, 85855, 211519, 506408, 1182650, 2702350, 6056850, 13343820, 28947240, 61926900, 130814600, 273163100, 564415390, 1154933230, 2342193350, 4710707400, 9401674275, 18629923053, 36670044621, 71728832280, 139485074370
Offset: 0

Views

Author

Keywords

Comments

a(n) = (((-i)^n)/6!)*((d^5/dx^5) S(n+6,x))|A049310%20for%20the%20S-polynomials.%20-%20_Wolfdieter%20Lang">{x=i}. Sixth derivative of Chebyshev S(n+6,x) polynomials evaluated at x=i (imaginary unit) multiplied by ((-i)^n)/6!. See A049310 for the S-polynomials. - _Wolfdieter Lang, Apr 04 2007
a(n) = number of weak compositions of n in which exactly 6 part are 0 and all other parts are either 1 or 2. - Milan Janjic, Jun 28 2010

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.

Programs

  • Maple
    a:= n-> (Matrix(14, (i,j)-> if (i=j-1) then 1 elif j=1 then [7,-14,-7,49, -14,-77,29,77, -14,-49,-7,14, 7,1][i] else 0 fi)^n)[1,1]: seq (a(n), n=0..22); # Alois P. Heinz, Aug 15 2008
  • Mathematica
    nn = 30; CoefficientList[Series[1/(1 - x - x^2)^7, {x, 0, nn}], x] (* T. D. Noe, Aug 10 2012 *)
    LinearRecurrence[{7,-14,-7,49,-14,-77,29,77,-14,-49,-7,14,7,1},{1,7,35,140,490,1554,4578,12720,33705,85855,211519,506408,1182650,2702350},30] (* Harvey P. Dale, Aug 05 2023 *)

Formula

G.f.: (1 - x - x^2)^(-7).
a(n) = F''''''(n+6, 1)/6!, i.e., 1/6! times the 6th derivative of the (n+6)th Fibonacci polynomial evaluated at 1. - T. D. Noe, Jan 18 2006
a(n) = Sum_{k=ceiling(n/2)..n} (k+1)*(k+2)*(k+3)*(k+4)*(k+5)*(k+6)*binomial(k,n-k)/720. - Vladimir Kruchinin, Apr 26 2011