A001875 Convolved Fibonacci numbers.
1, 7, 35, 140, 490, 1554, 4578, 12720, 33705, 85855, 211519, 506408, 1182650, 2702350, 6056850, 13343820, 28947240, 61926900, 130814600, 273163100, 564415390, 1154933230, 2342193350, 4710707400, 9401674275, 18629923053, 36670044621, 71728832280, 139485074370
Offset: 0
Keywords
References
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers [Corrected annotated scanned copy]
- M. S. Waterman, Home Page (contains copies of his papers)
- Index entries for linear recurrences with constant coefficients, signature (7, -14, -7, 49, -14, -77, 29, 77, -14, -49, -7, 14, 7, 1).
Programs
-
Maple
a:= n-> (Matrix(14, (i,j)-> if (i=j-1) then 1 elif j=1 then [7,-14,-7,49, -14,-77,29,77, -14,-49,-7,14, 7,1][i] else 0 fi)^n)[1,1]: seq (a(n), n=0..22); # Alois P. Heinz, Aug 15 2008
-
Mathematica
nn = 30; CoefficientList[Series[1/(1 - x - x^2)^7, {x, 0, nn}], x] (* T. D. Noe, Aug 10 2012 *) LinearRecurrence[{7,-14,-7,49,-14,-77,29,77,-14,-49,-7,14,7,1},{1,7,35,140,490,1554,4578,12720,33705,85855,211519,506408,1182650,2702350},30] (* Harvey P. Dale, Aug 05 2023 *)
Formula
G.f.: (1 - x - x^2)^(-7).
a(n) = F''''''(n+6, 1)/6!, i.e., 1/6! times the 6th derivative of the (n+6)th Fibonacci polynomial evaluated at 1. - T. D. Noe, Jan 18 2006
a(n) = Sum_{k=ceiling(n/2)..n} (k+1)*(k+2)*(k+3)*(k+4)*(k+5)*(k+6)*binomial(k,n-k)/720. - Vladimir Kruchinin, Apr 26 2011
Comments