cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001899 Number of divisors of n of the form 5k+4; a(0) = 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 2, 0, 0, 1, 2, 1, 0, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 1, 0, 2, 1, 0, 0, 2, 1, 0, 0, 1, 0, 2, 0, 2, 1, 1, 1, 1, 0, 0, 1, 2, 0, 0, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 1, 1, 1, 1, 0, 0, 3, 0, 0
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0}, Table[d = Divisors[n]; Length[Select[d, Mod[#, 5] == 4 &]], {n, 100}]] (* T. D. Noe, Aug 10 2012 *)
  • PARI
    a(n) = if (n==0, 0, sumdiv(n, d, (d % 5)==4)); \\ Michel Marcus, Feb 28 2021

Formula

G.f.: Sum_{n>=0} x^(5*n+4)/(1 - x^(5*n+4)).
G.f.: Sum_{k>=1} x^(4*k)/(1 - x^(5*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/5 + c*n + O(n^(1/3)*log(n)), where c = gamma(4,5) - (1 - gamma)/5 = A256849 - (1 - A001620)/5 = -0.213442... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

Extensions

Better definition from Michael Somos, Aug 31 2004