A001951 A Beatty sequence: a(n) = floor(n*sqrt(2)).
0, 1, 2, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, 24, 25, 26, 28, 29, 31, 32, 33, 35, 36, 38, 39, 41, 42, 43, 45, 46, 48, 49, 50, 52, 53, 55, 56, 57, 59, 60, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 76, 77, 79, 80, 82, 83, 84, 86, 87, 89, 90, 91, 93, 94, 96, 97, 98, 100
Offset: 0
References
- Eric DuchĂȘne, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, Urban Larsson, Wythoff Visions, Games of No Chance, Vol. 5; MSRI Publications, Vol. 70 (2017), pages 101-153.
- Stephen M. Gagola Jr., Solution of Problem 12282, Am. Math. Monthly, 130 (2023), pp. 682-683.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 77.
- Gareth A. Jones and J. Mary Jones, Elementary Number Theory, Springer, 1998; pp. 221-222.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Roland Sprague, Recreations in Mathematics, Blackie and Son, (1963).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition (1997), Entry sqrt(2), p. 18.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- L. Carlitz, Richard Scoville and Verner E. Hoggatt, Jr., Pellian representatives, Fib. Quart., 10 (1972), 449-488.
- Ian G. Connell, A generalization of Wythoff's game, Canad. Math. Bull. 2 (1959) 181-190
- Bob de Boisvilliers, ASCII circles' boundary pixels count examples from n=0 to n=10
- Ed Doolittle, Problem 19, 26th I.M.O. Finland proposed by Romania, Crux Mathematicorum, p. 70, Vol. 14, Mar. 88.
- Aviezri S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly, 89 (1982), 353-361 (the case a=2).
- Aviezri S. Fraenkel, On the recurrence f(m+1)= b(m)*f(m)-f(m-1) and applications, Discrete Mathematics 224 (2000), no. 1-3, pp. 273-279.
- Wen An Liu and Xiao Zhao, Adjoining to (s,t)-Wythoff's game its P-positions as moves, Discrete Applied Mathematics, Aug 27 2014; See Table 3.
- Luke Schaeffer, Jeffrey Shallit, and Stefan Zorcic, Beatty Sequences for a Quadratic Irrational: Decidability and Applications, arXiv:2402.08331 [math.NT], 2024. See pp. 17-18.
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
- Eric Weisstein's World of Mathematics, Beatty Sequence.
- Index entries for sequences related to Beatty sequences
Crossrefs
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A003151 as the parent: A003151, A001951, A001952, A003152, A006337, A080763, A082844 (conjectured), A097509, A159684, A188037, A245219 (conjectured), A276862. - N. J. A. Sloane, Mar 09 2021
Partial sums: A194102.
Programs
-
Haskell
a001951 = floor . (* sqrt 2) . fromIntegral -- Reinhard Zumkeller, Sep 14 2014
-
Magma
[Floor(n*Sqrt(2)): n in [0..60]]; // Vincenzo Librandi, Oct 22 2011
-
Magma
[Isqrt(2*n^2):n in[0..60]]; // Jason Kimberley, Oct 28 2016
-
Maple
a:=n->floor(n*sqrt(2)): seq(a(n),n=0..80); # Muniru A Asiru, Mar 09 2019
-
Mathematica
Floor[Range[0, 72] Sqrt[2]] (* Robert G. Wilson v, Oct 17 2012 *)
-
Maxima
makelist(floor(n*sqrt(2)), n, 0, 100); /* Martin Ettl, Oct 17 2012 */
-
PARI
f(n) = for(j=1,n,print1(floor(sqrt(2*j^2))","))
-
PARI
a(n)=sqrtint(2*n^2) \\ Charles R Greathouse IV, Oct 19 2016
-
Python
from sympy import integer_nthroot def A001951(n): return integer_nthroot(2*n**2,2)[0] # Chai Wah Wu, Mar 16 2021
Formula
a(n) = floor(csc(1/(sqrt(2)*n))) for n > 0, since sqrt(2)*n < csc(1/(sqrt(2)*n)) < sqrt(2)*n + 1/(3*sqrt(2)*n) < floor(sqrt(2)*n) + 1 for n > 0. - Jianing Song, Sep 07 2021
Extensions
More terms from David W. Wilson, Sep 20 2000
Comments