A001999 a(n) = a(n-1)*(a(n-1)^2 - 3).
3, 18, 5778, 192900153618, 7177905237579946589743592924684178
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..7
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- E. B. Escott, Rapid method for extracting a square root, Amer. Math. Monthly, Vol. 44, No. 10 (1937), pp. 644-646.
- N. J. Fine, Infinite products for k-th roots, Amer. Math. Monthly Vol. 84, No. 8 (Oct. 1977), pp. 629-630.
- Walther Janous, Problem B-916, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 39, No. 2 (2001), p. 181; Subscript Is Power, Solution to Problem B-916 by H.-J. Seiffert, ibid., Vol. 40, No. 1 (2002), p. 86.
- Hideyuki Ohtsu, Problem B-1316, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 60, No. 4 (2022), p. 365.
- Eric Weisstein's World of Mathematics, Pierce Expansion.
Programs
-
Mathematica
NestList[#(#^2-3)&,3,6] (* Harvey P. Dale, Jun 09 2011 *) RecurrenceTable[{a[n] == a[n - 1]^3 - 3*a[n - 1], a[0] == 3}, a, {n, 0, 5}] (* G. C. Greubel, Dec 30 2016 *)
-
PARI
a(n)=2*fibonacci(2*3^n+1)-fibonacci(2*3^n)
Formula
a(n) = 2*F(2*3^n+1) - F(2*3^n) = ceiling(tau^(2*3^n)) where F(k) = A000045(k) is the k-th Fibonacci number and tau is the golden ratio. - Benoit Cloitre, Nov 29 2002
From Peter Bala, Nov 13 2012: (Start)
a(n) = ((3 + sqrt(5))/2)^(3^n) + ((3 - sqrt(5))/2)^(3^n).
Product_{n >= 0} (1 + 2/(a(n) - 1)) = sqrt(5).
a(n) = A002814(n+1) + 1. (End)
a(n) = 2*T(3^n,3/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. Cf. A219161. - Peter Bala, Feb 01 2017
From Amiram Eldar, Jan 12 2022: (Start)
a(n) = A000032(2*3^n).
a(n) = A006267(n)^2 + 2.
Product_{k=0..n} (a(k)-1) = Fibonacci(3^(n+1)) = A045529(n+1) (Janous, 2001). (End)
Sum_{n>=0} arctanh(1/a(n)) = log(5)/4 (Ohtsu, 2022). - Amiram Eldar, Dec 15 2022
Comments