cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A045529 a(n+1) = 5*a(n)^3 - 3*a(n), a(0) = 1.

Original entry on oeis.org

1, 2, 34, 196418, 37889062373143906, 271964099255182923543922814194423915162591622175362
Offset: 0

Views

Author

Jose Eduardo Blazek, Dec 11 1999

Keywords

Comments

The next term, a(6), has 153 digits. - Harvey P. Dale, Oct 24 2011

Crossrefs

Cf. (k^n)-th Fibonacci number: A058635 (k=2), this sequence (k=3), A145231 (k=4), A145232 (k=5), A145233 (k=6), A145234 (k=7), A250487 (k=8), A250488 (k=9), A250489 (k=10).

Programs

  • Maple
    a := proc(n) option remember; if n = 0 then 1 else 5*a(n-1)^3 - 3*a(n-1) end if; end:
    seq(a(n), n = 0..5); # Peter Bala, Nov 24 2022
  • Mathematica
    G = (1 + Sqrt[5])/2; Table[Expand[(G^(3^n) - (1 - G)^(3^n))/Sqrt[5]], {n, 1, 7}] (* Artur Jasinski, Oct 05 2008 *)
    Table[Round[(4/5)^(1/2)*Cosh[3^n*ArcCosh[((5/4)^(1/2))]]], {n, 1, 4}] (* Artur Jasinski, Oct 05 2008 *)
    RecurrenceTable[{a[0]==1,a[n]==5a[n-1]^3-3a[n-1]},a[n],{n,6}] (* Harvey P. Dale, Oct 24 2011 *)
    NestList[5#^3-3#&,1,5] (* Harvey P. Dale, Dec 21 2014 *)
  • Maxima
    A045529(n):=fib(3^n)$
    makelist(A045529(n),n,0,10); /* Martin Ettl, Nov 12 2012 */

Formula

The first example I know in which a(n) can be expressed as (4/5)^(1/2)*cosh(3^n*arccosh((5/4)^(1/2))).
a(n) = Fibonacci(3^n). - Leroy Quet, Mar 17 2002
a(n+1) = a(n)*A002814(n+1). - Lekraj Beedassy, Jun 16 2003
a(n) = (phi^(3^n) - (1 - phi)^(3^n))/sqrt(5), where phi is the golden ratio (A001622). - Artur Jasinski, Oct 05 2008
a(n) = Product_{k=0..n-1} (Lucas(2*3^k) - 1) (Usiskin, 1973). - Amiram Eldar, Jan 29 2022
From Peter Bala, Nov 24 2022: (Start)
a(2*n+2) == a(2*n) (mod 3^(2*n+1)); a(2*n+3) == a(2*n+1) (mod 3^(2*n+2));
a(2*n+1) + a(2*n) == 0 (mod 3^(2*n+1)).
a(2*n) == 1 (mod 3) and a(2*n+1) == 2 (mod 3).
5*a(n)^2 == 2 (mod 3^(n+1)).
In the ring of 3-adic integers, the sequences {a(2*n)} and {a(2*n+1)} are both Cauchy sequences and converge to the pair of 3-adic roots of the quadratic equation 5*x^2 - 2 = 0. (End)
From Amiram Eldar, Jan 07 2023: (Start)
Product_{n>=1} (1 + 2/(sqrt(5)*a(n)-1)) = phi (A001622).
Product_{n>=1} (1 - 2/(sqrt(5)*a(n)+1)) = 1/phi (A094214).
Both formulas are from Duverney and Kurosawa (2022). (End)

A006267 Continued cotangent for the golden ratio.

Original entry on oeis.org

1, 4, 76, 439204, 84722519070079276, 608130213374088941214747405817720942127490792974404
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 1 then 4 else a(n-1)^3 + 3*a(n-1) end if; end: seq(a(n), n = 1..5); # Peter Bala, Nov 15 2022
  • Mathematica
    c = N[GoldenRatio, 1000]; Table[Round[c^(3^n)], {n, 1, 8}] (* Artur Jasinski, Sep 22 2008 *)
    a = {}; x = 4; Do[AppendTo[a, x]; x = x^3 + 3 x, {n, 1, 10}]; a (* Artur Jasinski, Sep 24 2008 *)
  • PARI
    a(n)=fibonacci(3^n+1) + fibonacci(3^n-1) \\ Andrew Howroyd, Dec 30 2024
    
  • PARI
    a(n)={my(t=1); for(i=1, n, t = t^3 + 3*t); t} \\ Andrew Howroyd, Dec 30 2024

Formula

(1+sqrt(5))/2 = cot(Sum_{n>=0} (-1)^n*acot(a(n))); let b(0) = (1+sqrt(5))/2, b(n) = (b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))) then a(n) = floor(b(n)). - Benoit Cloitre, Apr 10 2003
a(n) = A000204(3^n). - Benoit Cloitre, Sep 18 2005
a(n) = round(c^(3^n)) where c = GoldenRatio = 1.6180339887498948482... = (sqrt(5)+1)/2 (A001622). - Artur Jasinski, Sep 22 2008
a(n) = a(n-1)^3 + 3*a(n-1), a(0) = 1. - Artur Jasinski, Sep 24 2008
a(n+1) = Product_{k = 0..n} A002813(k). Thus a(n) divides a(n+1). - Peter Bala, Nov 22 2012
Sum_{n>=0} a(n)^2/A045529(n+1) = 1. - Amiram Eldar, Jan 12 2022
a(n) = Product_{k=0..n-1} (Lucas(2*3^k) + 1) (Usiskin, 1973). - Amiram Eldar, Jan 29 2022
From Peter Bala, Nov 15 2022: (Start)
a(n) = Lucas(3^n) for n >= 1.
a(n) == 1 (mod 3) for n >= 1.
a(n+1) == a(n) (mod 3^(n+1)) for n >= 1 (a particular case of the Gauss congruences for the Lucas numbers).
The smallest positive residue of a(n) mod 3^n = A268924(n).
In the ring of 3-adic integers the limit_{n -> oo} a(n) exists and is equal to A271223. Cf. A006266. (End)

Extensions

The next term is too large to include.

A002814 For n > 1: a(n) = a(n-1)^3 + 3a(n-1)^2 - 3; a(0) = 1, a(1) = 2.

Original entry on oeis.org

1, 2, 17, 5777, 192900153617, 7177905237579946589743592924684177
Offset: 0

Views

Author

Keywords

Comments

An infinite coprime sequence defined by recursion. - Michael Somos, Mar 14 2004
Next terms have 102 and 305 digits. - Harvey P. Dale, Jun 06 2011
From Peter Bala, Nov 15 2012: (Start)
The present sequence is the case x = 3 of the following general remarks. The recurrence equation a(n+1) = a(n)^3 + 3*a(n)^2 - 3 with the initial condition a(1) = x - 1 > 1 has the explicit solution a(n+1) = alpha^(3^n) + (1/alpha)^(3^n) - 1 for n >= 0, where alpha := {x + sqrt(x^2 - 4)}/2.
Two other recurrences satisfied by the sequence are a(n+1) = (a(1) + 3)*(Product_{k = 1..n} a(k)^2) - 3 and a(n+1) = 1 + (a(1) - 1)*Product_{k = 1..n} (a(k) + 2)^2, both with a(1) = x - 1.
The associated sequence b(n) := a(n) + 1 satisfies the recurrence equation b(n+1) = b(n)^3 - 3*b(n) with the initial condition b(1) = x. See A001999 for the case x = 3. The sequence c(n) := a(n) + 2 satisfies the recurrence equation c(n+1) = c(n)^3 - 3*c(n)^2 + 3 with the initial condition c(1) = x + 1.
The sequences a(n) and b(n) have been considered by Fine and Escott in connection with a product expansion for quadratic irrationals. We have the following identity, valid for x > 2: sqrt((x + 2)/(x - 2)) = (1 + 2/(x-1))*sqrt((y + 2)/(y - 2)), where y = x^3 - 3*x or, equivalently, y - 1 = (x - 1)^3 + 3*(x - 1)^2 - 3. Iterating the identity produces the product expansion sqrt((x+2)/(x-2)) = Product_{n >= 1} (1 + 2/a(n)), with a(1) = x - 1 and a(n+1) = a(n)^3 + 3*a(n)^2 - 3.
For similar results to the above see A145502. See also A219162. (End)
Conjecture: The sequence {a(n) - 2: n >= 1} is a strong divisibility sequence, that is, gcd(a(n) - 2, a(m) - 2) = a(gcd(n, m)) - 2 for n, m >= 1. - Peter Bala, Dec 08 2022

References

  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 397.
  • E. Lucas, Nouveaux théorèmes d'arithmétique supérieure, Comptes Rend., 83 (1876), 1286-1288.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002814 n = a002814_list !! n
    a002814_list = 1 : zipWith div (tail xs) xs
       where xs = map a000045 a000244_list
    -- Reinhard Zumkeller, Nov 24 2012
  • Mathematica
    Join[{1}, NestList[#^3+3#^2-3&,2,5]] (* Harvey P. Dale, Apr 01 2011 *)
  • Maxima
    a[0]:1$ a[1]:2$ a[n]:=a[n-1]^3 + 3*a[n-1]^2-3$ A002814(n):=a[n]$
    makelist(A002814(n),n,0,6); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    a(n)=if(n<2,max(0,n+1),a(n-1)^3+3*a(n-1)^2-3)
    

Formula

a(n) = Fibonacci(3^n)/Fibonacci(3^(n-1)). - Henry Bottomley, Jul 10 2001
a(n+1) = 5*(f(n))^2 - 3, where f(n) = Fibonacci(3^n) = product of first n entries. - Lekraj Beedassy, Jun 16 2003
From Artur Jasinski, Oct 05 2008: (Start)
a(n+2) = (G^(3^(n + 1)) - (1 - G)^(3^(n + 1)))/((G^(3^n)) - (1 - G)^(3^n)) where G = (1 + sqrt(5))/2;
a(n+2) = A045529(n+1)/A045529(n). (End)
From Peter Bala, Nov 15 2012: (Start)
a(n+1) = (1/2*(3 + sqrt(5)))^(3^n) + (1/2*(3 - sqrt(5)))^(3^n) - 1.
The sequence b(n):= a(n) + 2 is a solution to the recurrence b(n+1) = b(n)^3 - 3*b(n)^2 + 3 with b(1) = 4.
Other recurrence equations:
a(n+1) = -3 + 5*(Product_{k = 1..n} a(k)^2) with a(1) = 2.
a(n+1) = 1 + Product_{k = 1..n} (a(k) + 2)^2 with a(1) = 2.
Thus Y := Product_{k = 1..n} a(k) and X := Product_{k = 1..n} (a(k) + 2) give a solution to the Diophantine equation X^2 - 5*Y^2 = -4.
sqrt(5) = Product_{n >= 1} (1 + 2/a(n)). The rate of convergence is cubic. Fine remarks that twelve factors of the product would give well over 300,000 correct decimal digits for sqrt(5).
5 - {Product_{n = 1..N} (1 + 2/a(n))}^2 = 20/(a(N+1) + 3). (End)
a(n) = 2*T(3^(n-1),3/2) - 1 for n >= 1, where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Dec 06 2022

Extensions

Definition improved by Reinhard Zumkeller, Feb 29 2012

A006276 Pierce expansion of (3 - sqrt(5))/2.

Original entry on oeis.org

2, 4, 17, 19, 5777, 5779, 192900153617, 192900153619, 7177905237579946589743592924684177, 7177905237579946589743592924684179, 369822356418414944143680173221426891716916679027557977938929258031490127514207143830378340325399155217
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Nov 22 2012: (Start)
For x in the open interval (0,1) define the map f(x) = 1 - x*floor(1/x). The n-th term (n >= 0) in the Pierce expansion of x is given by floor(1/f^(n)(x)), where f^(n)(x) denotes the n-th iterate of the map f, with the convention that f^(0)(x) = x.
Let x = (sqrt(5) - 1)/2, the reciprocal of the golden ratio, and let X = (3 - sqrt(5))/2 so that X = x^2. The Pierce expansion of X^(3^n) is [a(2*n), a(2*n+1), a(2*n+2), ...]. The Pierce expansion of x is A118242 = [1, a(0), a(1), a(2), ...]. The Pierce expansion of x^3 is [a(1), a(2), a(3), ...]. In general, the Pierce expansion of x^(3^n) for n >= 1 is [a(1)*a(3)*...*a(2*n-1), a(2*n), a(2*n+1), a(2*n+2), ...] = [sqrt(a(2*n) - 1), a(2*n), a(2*n+1), a(2*n+2), ...]. Some examples of the associated alternating series are given below.
(End)

Examples

			From _Peter Bala_, Nov 22 2012: (Start)
Let x = (sqrt(5) - 1)/2. We have the alternating series expansions
x = 1 - 1/2 + 1/(2*4) - 1/(2*4*17) + 1/(2*4*17*19) - ...
x^2 = 1/2 - 1/(2*4) + 1/(2*4*17) - 1/(2*4*17*19) + ...
x^6 = 1/17 - 1/(17*19) + 1/(17*19*5777) - ...
as well as
x^3 = 1/4 - 1/(4*17) + 1/(4*17*19) - 1/(4*17*19*5777) + ...
4*x^9 = 1/19 - 1/(19*5777) + 1/(19*5777*5779) - ...
4*19*x^27 = 1/5779 - 1/(5779*192900153617) + ....
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A118242.

Programs

  • Mathematica
    Table[c=2*3^Floor[n/2]; 2*Fibonacci[c+1]-Fibonacci[c]-(-1)^n, {n,0,10}] (* Harvey P. Dale, Oct 22 2013 *)
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[(3 - Sqrt[5])/2, 7!], 10] (* G. C. Greubel, Nov 14 2016 *)
  • PARI
    r=(1+sqrt(5))/2; for(n=1,10, r=r/(r-floor(r)) print1(floor(r),","))

Formula

Let c(0)=3, c(n+1) = c(n)^3-3*c(n) [A001999]; then this sequence is c(0)-1, c(0)+1, c(1)-1, c(1)+1, c(2)-1, c(2)+1, ......
a(n) = 2*F(2*3^floor(n/2)+1)-F(2*3^floor(n/2))-(-1)^n where F(k) denotes the k-th Fibonacci number A000045(k)
Let u(0)=(1+sqrt(5))/2 and u(n+1)=u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n)=floor(u(n)). - Benoit Cloitre, Mar 09 2004
a(2*n) = ((3 + sqrt(5))/2)^(3^n) + ((3 - sqrt(5))/2)^(3^n) - 1.
a(2*n+1) = ((3 + sqrt(5))/2)^(3^n) + ((3 - sqrt(5))/2)^(3^n) + 1. - Peter Bala, Nov 22 2012

Extensions

More terms from James Sellers, May 19 2000

A112845 Recurrence a(n) = a(n-1)^3 - 3*a(n-1) with a(0) = 6.

Original entry on oeis.org

6, 198, 7761798, 467613464999866416198, 102249460387306384473056172738577521087843948916391508591105798
Offset: 0

Views

Author

Eric W. Weisstein, Sep 21 2005

Keywords

Comments

Identical to A006243 apart from the initial term. For some general remarks on this recurrence see A001999. - Peter Bala, Nov 13 2012

Crossrefs

Cf. A006243. - R. J. Mathar, Aug 15 2008

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1]^3 - 3*a[n - 1], a[0] == 6}, a, {n,
      0, 5}] (* G. C. Greubel, Dec 30 2016 *)
    NestList[#^3-3#&,6,5] (* Harvey P. Dale, Jul 23 2025 *)

Formula

a(n) = -2*cos(3^n*arccos(-3)).
From Peter Bala, Nov 13 2012: (Start)
a(n) = (3 + 2*sqrt(2))^(3^n) + (3 - 2*sqrt(2))^(3^n).
Product {n = 0..inf} (1 + 2/(a(n) - 1)) = sqrt(2).
(End)

A219160 Recurrence equation a(n+1) = a(n)^3 - 3*a(n) with a(0) = 4.

Original entry on oeis.org

4, 52, 140452, 2770663499604052, 21269209556953516583554114034636483645584976452
Offset: 0

Views

Author

Peter Bala, Nov 13 2012

Keywords

Comments

For some general remarks on this recurrence see A001999.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1]^3 - 3*a[n - 1], a[0] == 4}, a, {n,
      0, 5}] (* G. C. Greubel, Dec 30 2016 *)

Formula

a(n) = (2 + sqrt(3))^(3^n) + (2 - sqrt(3))^(3^n).
Product {n = 0..inf} (1 + 2/(a(n) - 1)) = sqrt(3). The rate of convergence is cubic. Fine remarks that taking the first twelve factors of the product would give well over 300,000 correct decimals for sqrt(3).

A219161 Recurrence equation a(n+1) = a(n)^3 - 3*a(n) with a(0) = 5.

Original entry on oeis.org

5, 110, 1330670, 2356194280407770990, 13080769480548649962914459850235688797656360638877986030
Offset: 0

Views

Author

Peter Bala, Nov 13 2012

Keywords

Comments

For some general remarks on this recurrence see A001999.
The next term (a(5)) has 166 digits. - Harvey P. Dale, Apr 23 2019

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1]^3 - 3*a[n - 1], a[0] == 5}, a, {n,
      0, 5}] (* G. C. Greubel, Dec 30 2016 *)
    NestList[#^3-3#&,5,5] (* Harvey P. Dale, Apr 23 2019 *)

Formula

a(n) = (1/2*(5 + sqrt(21)))^(3^n) + (1/2*(5 - sqrt(21)))^(3^n).
Product_{n = 0..inf} (1 + 2/(a(n) - 1)) = sqrt(7/3).
a(n) = 2*T(3^n,5/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. Cf. A001999. - Peter Bala, Feb 01 2017

A002813 a(0) = 4; for n > 0, a(n) = a(n-1)^3 - 3*a(n-1)^2 + 3.

Original entry on oeis.org

4, 19, 5779, 192900153619, 7177905237579946589743592924684179, 369822356418414944143680173221426891716916679027557977938929258031490127514207143830378340325399155219
Offset: 0

Views

Author

Keywords

Comments

An infinite coprime sequence defined by recursion. - Michael Somos, Mar 14 2004
The next term, a(7), has 305 digits. - Harvey P. Dale, Jul 19 2011
From Peter Bala, Nov 22 2012: (Start)
The present sequence is the case x = 1 of the following general remarks about the recurrence a(n+1) = a(n)^3 - 3*a(n-1)^2 + 3. Cf. A002814.
Define a sequence of polynomials P(n,x) inductively by setting P(0,x) = x^2 + 3 and P(n+1,x) = P(n,x^3 + 3*x) for n >= 0. Then P(n,x) satisfies the cubic recurrence P(n+1,x) = P(n,x)^3 - 3*P(n-1,x)^2 + 3 with the initial condition P(0,x) = x^2 + 3.
An explicit formula is P(n,x) = Q(3^(n+1),x)/Q(3^n,x), where Q(n,x) = ((x + sqrt(x^2 + 4))/2)^n + ((x - sqrt(x^2 + 4))/2)^n.
Alternatively, P(n,x) = ((x^2 + 2 + sqrt(x^4 + 4*x^2))/2)^(3^n) + ((x^2 + 2 - sqrt(x^4 + 4*x^2))/2)^(3^n) + 1.
Iterating the algebraic identity x/sqrt(x^2 + 4) = (1 - 2/(x^2 + 3))*y/sqrt(y^2 + 4), where y = x^3 + 3*x, leads to the product expansion x/sqrt(x^2 + 4) = Product_{n = 0..oo} (1 - 2/P(n,x)). See Escott and also Fine.
The sequence A(n,x) := x*Product_{k = 0..n} P(k,x) satisfies the recurrence A(n+1,x) = A(n,x)^3 + 3*A(n,x). These sequences occur in the continued cotangent expansions of Lehmer. Cases currently in the database are A006267 (x = 1), A006266 (x = 2), A006268 (x = 3), A006269 (x = 5) and A145180 through A145189 (x = 6 through x = 15).
(End)

References

  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 397.
  • E. Lucas, Nouveaux théorèmes d'arithmétique supérieure, Comptes Rend., 83 (1876), 1286-1288.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Lucas(2*3^n)+1: n in [0..5]]; // Vincenzo Librandi, Jul 20 2011
  • Mathematica
    NestList[#^3-3#^2+3&,4,6] (* Harvey P. Dale, Jul 19 2011 *)
  • PARI
    a(n)=if(n<1,4*(n==0),a(n-1)^3-3*a(n-1)^2+3)
    
  • PARI
    a(n)=if(n<0,0,n=2*3^n;fibonacci(n+1)+fibonacci(n-1)+1)
    

Formula

a(n) = L(2*3^n)+1 where L=Lucas numbers.
a(n) = L(3^(n+1))/L(3^n). - Benoit Cloitre, Sep 18 2005
a(n) = A001999(n)+1. - R. J. Mathar, Apr 22 2007
From Peter Bala, Nov 22 2012: (Start)
a(n) = ((3 + sqrt(5))/2)^(3^n) + ((3 - sqrt(5))/2)^(3^n) + 1.
(1/5)*sqrt(5) = Product_{n = 0..oo} (1 - 2/a(n)).
A006267(n+1) = Product_{k = 0..n} a(k).
A002814(n+1) = a(n) - 2. (End)

A219162 Recurrence equation a(n+1) = a(n)^4 - 4*a(n)^2 + 2 with a(0) = 3.

Original entry on oeis.org

3, 47, 4870847, 562882766124611619513723647
Offset: 0

Views

Author

Peter Bala, Nov 13 2012

Keywords

Comments

Bisection of A001566. Compare the following remarks with A001999.
The present sequence is the case x = 3 of the following general remarks. For other cases see A219163 (x = 4), A219164 (x = 5) and A219165 (x = 6).
Let x > 2 and let alpha := {x + sqrt(x^2 - 4)}/2. Define a sequence a(n) (which depends on x) by setting a(n) = alpha^(4^n) + (1/alpha)^(4^n). Then it is easy to verify that the sequence a(n) satisfies the recurrence equation a(n+1) = a(n)^4 + 4*a(n)^2 - 2 with the initial condition a(0) = x.
We have the product expansion sqrt((x + 2)/(x - 2)) = Product_{n >= 0} ((1 + 2/a(n))/(1 - 2/a(n)^2)).

Crossrefs

Programs

  • PARI
    a(n)={if(n==0,3,a(n-1)^4-4*a(n-1)^2+2)} \\ Edward Jiang, Sep 11 2014

Formula

Let alpha = 1/2*(3 + sqrt(5)) then a(n) = (alpha)^(4^n) + (1/alpha)^(4^n).
a(n) = A001566(2*n) = A000032(2*4^n).
Product {n >= 0} ((1 + 2/a(n))/(1 - 2/a(n)^2)) = sqrt(5).
From Peter Bala, Dec 06 2022: (Start)
a(n) = 2*T(4^n,3/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
Let b(n) = a(n) - 3. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. (End)

A219163 Recurrence equation a(n+1) = a(n)^4 - 4*a(n)^2 + 2 with a(0) = 4.

Original entry on oeis.org

4, 194, 1416317954, 4023861667741036022825635656102100994
Offset: 0

Views

Author

Peter Bala, Nov 13 2012

Keywords

Comments

Bisection of A003010.
a(4) has 147 digits and a(5) has 586 digits. - Harvey P. Dale, Mar 03 2020

Crossrefs

Programs

  • Mathematica
    NestList[#^4-4#^2+2&,4,5] (* Harvey P. Dale, Mar 03 2020 *)
  • PARI
    a(n)={if(n==0,4,a(n-1)^4-4*a(n-1)^2+2)} \\ Edward Jiang, Sep 11 2014

Formula

Let alpha = 2 + sqrt(3). Then a(n) = (alpha)^(4^n) + (1/alpha)^(4^n).
a(n) = A003010(2*n) = A003500(4^n).
Product_{n >= 0} ((1 + 2/a(n))/(1 - 2/a(n)^2)) = sqrt(3).
From Peter Bala, Dec 06 2022: (Start)
a(n) = 2*T(4^n,2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
Let b(n) = a(n) - 4. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. (End)
Showing 1-10 of 15 results. Next