cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001999 a(n) = a(n-1)*(a(n-1)^2 - 3).

Original entry on oeis.org

3, 18, 5778, 192900153618, 7177905237579946589743592924684178
Offset: 0

Views

Author

Keywords

Comments

The next terms in the sequence contain 102 and 305 digits. - Harvey P. Dale, Jun 09 2011
From Peter Bala, Nov 13 2012: (Start)
The present sequence is the case x = 3 of the following general remarks. For other cases see A219160 (x = 4), A219161 (x = 5) and A112845 (x = 6).
Let x > 2 and let alpha := {x + sqrt(x^2 - 4)}/2. Define a sequence a(n) (which depends on x) by setting a(n) = alpha^(3^n) + (1/alpha)^(3^n). Then it is easy to verify that the sequence a(n) satisfies the recurrence equation a(n+1) = a(n)^3 - 3*a(n) with the initial condition a(0) = x.
We have the following identity, valid for x > 2: sqrt((x + 2)/(x - 2)) = (1 + 2/(x-1))*sqrt((y + 2)/(y - 2)), where y = x^3 - 3*x. Iterating the identity produces the product expansion sqrt((x+2)/(x-2)) = Product_{n = 0..oo} (1 + 2/(a(n) - 1)), with a(0) = x and a(n+1) = a(n)^3 - 3*a(n). The rate of convergence is cubic (Fine).
For similar results to the above see A001566 and A219162. (End)
Let b(n) = a(n) - 3. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. - Peter Bala, Dec 08 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    NestList[#(#^2-3)&,3,6] (* Harvey P. Dale, Jun 09 2011 *)
    RecurrenceTable[{a[n] == a[n - 1]^3 - 3*a[n - 1], a[0] == 3}, a, {n,
      0, 5}] (* G. C. Greubel, Dec 30 2016 *)
  • PARI
    a(n)=2*fibonacci(2*3^n+1)-fibonacci(2*3^n)

Formula

a(n) = 2*F(2*3^n+1) - F(2*3^n) = ceiling(tau^(2*3^n)) where F(k) = A000045(k) is the k-th Fibonacci number and tau is the golden ratio. - Benoit Cloitre, Nov 29 2002
From Peter Bala, Nov 13 2012: (Start)
a(n) = ((3 + sqrt(5))/2)^(3^n) + ((3 - sqrt(5))/2)^(3^n).
Product_{n >= 0} (1 + 2/(a(n) - 1)) = sqrt(5).
a(n) = A002814(n+1) + 1. (End)
a(n) = 2*T(3^n,3/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. Cf. A219161. - Peter Bala, Feb 01 2017
From Amiram Eldar, Jan 12 2022: (Start)
a(n) = A000032(2*3^n).
a(n) = A006267(n)^2 + 2.
Product_{k=0..n} (a(k)-1) = Fibonacci(3^(n+1)) = A045529(n+1) (Janous, 2001). (End)
Sum_{n>=0} arctanh(1/a(n)) = log(5)/4 (Ohtsu, 2022). - Amiram Eldar, Dec 15 2022

A219160 Recurrence equation a(n+1) = a(n)^3 - 3*a(n) with a(0) = 4.

Original entry on oeis.org

4, 52, 140452, 2770663499604052, 21269209556953516583554114034636483645584976452
Offset: 0

Views

Author

Peter Bala, Nov 13 2012

Keywords

Comments

For some general remarks on this recurrence see A001999.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1]^3 - 3*a[n - 1], a[0] == 4}, a, {n,
      0, 5}] (* G. C. Greubel, Dec 30 2016 *)

Formula

a(n) = (2 + sqrt(3))^(3^n) + (2 - sqrt(3))^(3^n).
Product {n = 0..inf} (1 + 2/(a(n) - 1)) = sqrt(3). The rate of convergence is cubic. Fine remarks that taking the first twelve factors of the product would give well over 300,000 correct decimals for sqrt(3).

A219161 Recurrence equation a(n+1) = a(n)^3 - 3*a(n) with a(0) = 5.

Original entry on oeis.org

5, 110, 1330670, 2356194280407770990, 13080769480548649962914459850235688797656360638877986030
Offset: 0

Views

Author

Peter Bala, Nov 13 2012

Keywords

Comments

For some general remarks on this recurrence see A001999.
The next term (a(5)) has 166 digits. - Harvey P. Dale, Apr 23 2019

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1]^3 - 3*a[n - 1], a[0] == 5}, a, {n,
      0, 5}] (* G. C. Greubel, Dec 30 2016 *)
    NestList[#^3-3#&,5,5] (* Harvey P. Dale, Apr 23 2019 *)

Formula

a(n) = (1/2*(5 + sqrt(21)))^(3^n) + (1/2*(5 - sqrt(21)))^(3^n).
Product_{n = 0..inf} (1 + 2/(a(n) - 1)) = sqrt(7/3).
a(n) = 2*T(3^n,5/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. Cf. A001999. - Peter Bala, Feb 01 2017

A006243 Extracting a square root.

Original entry on oeis.org

198, 7761798, 467613464999866416198, 102249460387306384473056172738577521087843948916391508591105798
Offset: 1

Views

Author

Keywords

References

  • Jeffrey Shallit, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006242, A112845 (differs only for the initial 6).

Programs

  • Magma
    [n eq 1 select 198 else Self(n-1)^3-3*Self(n-1): n in [1..5]]; // Vincenzo Librandi, Feb 09 2017
  • Mathematica
    RecurrenceTable[{a[1]==198, a[n]==a[n-1]^3 - 3 a[n-1]}, a, {n, 8}] (* Vincenzo Librandi, Feb 09 2017 *)

Formula

a(1) = 198, a(n) = a(n-1)^3 - 3*a(n-1). - Sean A. Irvine, Feb 08 2017
a(n) = (99 + 70*sqrt(2))^(3^(n-1)) + (99 - 70*sqrt(2))^(3^(n-1)). - Bruno Berselli, Feb 10 2017

Extensions

Offset changed by Sean A. Irvine, Feb 08 2017

A219506 Pierce expansion of 2 - sqrt(3).

Original entry on oeis.org

3, 5, 51, 53, 140451, 140453, 2770663499604051, 2770663499604053, 21269209556953516583554114034636483645584976451, 21269209556953516583554114034636483645584976453
Offset: 0

Views

Author

Peter Bala, Nov 22 2012

Keywords

Comments

For x in the open interval (0,1) define the map f(x) = 1 - x*floor(1/x). The n-th term (n >= 0) in the Pierce expansion of x is given by floor(1/f^(n)(x)), where f^(n)(x) denotes the n-th iterate of the map f, with the convention that f^(0)(x) = x.
The present sequence is the case x = 2 - sqrt(3).
Shallit has shown that the Pierce expansion of the quadratic irrational (c - sqrt(c^2 - 4))/2 has the form [c(0) - 1, c(0) + 1, c(1) - 1, c(1) + 1, c(2) - 1, c(2) + 1, ...], where c(0) = c and c(n+1) = c(n)^3 - 3*c(n). This is the case c = 4. For other cases see A006276 (c = 3), A219507 (c = 5) and A006275 (essentially c = 6 apart from the initial term).
The Pierce expansion of ((c - sqrt(c^2 - 4))/2)^(3^n) is [c(n) - 1, c(n) + 1, c(n+1) - 1, c(n+1) + 1, c(n+2) - 1, c(n+2) + 1, ...].

Examples

			We have the alternating series expansions
2 - sqrt(3) = 1/3 - 1/(3*5) + 1/(3*5*51) - 1/(3*5*51*53) + ...
(2 - sqrt(3))^3 = 1/51 - 1/(51*53) + 1/(51*53*140451) - ...
(2 - sqrt(3))^9 = 1/140451 - 1/(140451*140453) + ....
		

Crossrefs

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[2 - Sqrt[3] , 7!], 10] (* G. C. Greubel, Nov 14 2016 *)

Formula

a(2*n) = (2 + sqrt(3))^(3^n) + (2 - sqrt(3))^(3^n) - 1.
a(2*n + 1) = (2 + sqrt(3))^(3^n) + (2 - sqrt(3))^(3^n) + 1.
From Peter Bala, Jan 18 2022: (Start)
a(2*n+2) = a(2*n)^3 + 3*a(2*n)^2 - 3; a(2*n+1) = a(2*n-1)^3 - 3*a(2*n-1)^2 + 3.
a(2*n) = 6*(Product_{k = 1..n-1} a(2*k))^2 - 3, with a(0) = 1;
a(2*n+1) = 2*(Product_{k = 0..n-1} a(2*k+1))^2 + 3, with a(1) = 5.
sqrt(3) = (1 + 2/3)*(1 + 2/51)*(1 + 2/140451)*(1 + 2/2770663499604051)* .... See Bauer.
1/sqrt(3) = (1 - 2/5)*(1 - 2/53)*(1 - 2/140453)*(1 - 2/2770663499604053)* .... (End)

A282180 a(n+1) = a(n)*(a(n)^2 - 3) with a(0) = 8.

Original entry on oeis.org

8, 488, 116212808, 1569502402942700328379688, 3866214585126515728777536857817155683642224883875510905654220958052649608
Offset: 0

Views

Author

Vincenzo Librandi, Feb 10 2017

Keywords

Crossrefs

Cf. similar sequences with initial value k: A001999 (k=3), A219160 (k=4), A219161 (k=5), A112845 (k=6), A002000 (k=7), this sequence (k=8), A282181 (k=9), A006242 (k=10), A006243 (k=198).

Programs

  • Magma
    [n eq 1 select 8 else Self(n-1)^3 - 3*Self(n-1): n in [1..6]];
  • Mathematica
    RecurrenceTable[{a[0] == 8, a[n] == a[n-1]^3 - 3 a[n-1]}, a, {n, 8}]

Formula

a(n) = (4 + sqrt(15))^(3^n) + (4 - sqrt(15))^(3^n). - Bruno Berselli, Feb 10 2017
a(n) = -2*cos(3^n * arccos(-4)). - Daniel Suteu, Feb 10 2017
Showing 1-6 of 6 results.