cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001999 a(n) = a(n-1)*(a(n-1)^2 - 3).

Original entry on oeis.org

3, 18, 5778, 192900153618, 7177905237579946589743592924684178
Offset: 0

Views

Author

Keywords

Comments

The next terms in the sequence contain 102 and 305 digits. - Harvey P. Dale, Jun 09 2011
From Peter Bala, Nov 13 2012: (Start)
The present sequence is the case x = 3 of the following general remarks. For other cases see A219160 (x = 4), A219161 (x = 5) and A112845 (x = 6).
Let x > 2 and let alpha := {x + sqrt(x^2 - 4)}/2. Define a sequence a(n) (which depends on x) by setting a(n) = alpha^(3^n) + (1/alpha)^(3^n). Then it is easy to verify that the sequence a(n) satisfies the recurrence equation a(n+1) = a(n)^3 - 3*a(n) with the initial condition a(0) = x.
We have the following identity, valid for x > 2: sqrt((x + 2)/(x - 2)) = (1 + 2/(x-1))*sqrt((y + 2)/(y - 2)), where y = x^3 - 3*x. Iterating the identity produces the product expansion sqrt((x+2)/(x-2)) = Product_{n = 0..oo} (1 + 2/(a(n) - 1)), with a(0) = x and a(n+1) = a(n)^3 - 3*a(n). The rate of convergence is cubic (Fine).
For similar results to the above see A001566 and A219162. (End)
Let b(n) = a(n) - 3. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. - Peter Bala, Dec 08 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    NestList[#(#^2-3)&,3,6] (* Harvey P. Dale, Jun 09 2011 *)
    RecurrenceTable[{a[n] == a[n - 1]^3 - 3*a[n - 1], a[0] == 3}, a, {n,
      0, 5}] (* G. C. Greubel, Dec 30 2016 *)
  • PARI
    a(n)=2*fibonacci(2*3^n+1)-fibonacci(2*3^n)

Formula

a(n) = 2*F(2*3^n+1) - F(2*3^n) = ceiling(tau^(2*3^n)) where F(k) = A000045(k) is the k-th Fibonacci number and tau is the golden ratio. - Benoit Cloitre, Nov 29 2002
From Peter Bala, Nov 13 2012: (Start)
a(n) = ((3 + sqrt(5))/2)^(3^n) + ((3 - sqrt(5))/2)^(3^n).
Product_{n >= 0} (1 + 2/(a(n) - 1)) = sqrt(5).
a(n) = A002814(n+1) + 1. (End)
a(n) = 2*T(3^n,3/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. Cf. A219161. - Peter Bala, Feb 01 2017
From Amiram Eldar, Jan 12 2022: (Start)
a(n) = A000032(2*3^n).
a(n) = A006267(n)^2 + 2.
Product_{k=0..n} (a(k)-1) = Fibonacci(3^(n+1)) = A045529(n+1) (Janous, 2001). (End)
Sum_{n>=0} arctanh(1/a(n)) = log(5)/4 (Ohtsu, 2022). - Amiram Eldar, Dec 15 2022

A112845 Recurrence a(n) = a(n-1)^3 - 3*a(n-1) with a(0) = 6.

Original entry on oeis.org

6, 198, 7761798, 467613464999866416198, 102249460387306384473056172738577521087843948916391508591105798
Offset: 0

Views

Author

Eric W. Weisstein, Sep 21 2005

Keywords

Comments

Identical to A006243 apart from the initial term. For some general remarks on this recurrence see A001999. - Peter Bala, Nov 13 2012

Crossrefs

Cf. A006243. - R. J. Mathar, Aug 15 2008

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1]^3 - 3*a[n - 1], a[0] == 6}, a, {n,
      0, 5}] (* G. C. Greubel, Dec 30 2016 *)
    NestList[#^3-3#&,6,5] (* Harvey P. Dale, Jul 23 2025 *)

Formula

a(n) = -2*cos(3^n*arccos(-3)).
From Peter Bala, Nov 13 2012: (Start)
a(n) = (3 + 2*sqrt(2))^(3^n) + (3 - 2*sqrt(2))^(3^n).
Product {n = 0..inf} (1 + 2/(a(n) - 1)) = sqrt(2).
(End)

A219160 Recurrence equation a(n+1) = a(n)^3 - 3*a(n) with a(0) = 4.

Original entry on oeis.org

4, 52, 140452, 2770663499604052, 21269209556953516583554114034636483645584976452
Offset: 0

Views

Author

Peter Bala, Nov 13 2012

Keywords

Comments

For some general remarks on this recurrence see A001999.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1]^3 - 3*a[n - 1], a[0] == 4}, a, {n,
      0, 5}] (* G. C. Greubel, Dec 30 2016 *)

Formula

a(n) = (2 + sqrt(3))^(3^n) + (2 - sqrt(3))^(3^n).
Product {n = 0..inf} (1 + 2/(a(n) - 1)) = sqrt(3). The rate of convergence is cubic. Fine remarks that taking the first twelve factors of the product would give well over 300,000 correct decimals for sqrt(3).

A002000 a(n+1) = a(n)*(a(n)^2 - 3) with a(0) = 7.

Original entry on oeis.org

7, 322, 33385282, 37210469265847998489922, 51522323599677629496737990329528638956583548304378053615581043535682
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n eq 1 select 7 else Self(n-1)^3 - 3*Self(n-1): n in [1..6]]; // Vincenzo Librandi, Feb 09 2017
  • Maple
    a := proc(n) option remember; if n = 0 then 7 else a(n-1)^3 - 3*a(n-1) end if; end;
    seq(a(n), n = 0..4); # Peter Bala, Nov 15 2022
  • Mathematica
    RecurrenceTable[{a[0] == 7, a[n] == a[n - 1]^3 - 3 a[n - 1]}, a, {n, 0, 8}]
    (* Vincenzo Librandi, Feb 09 2017 *)
    NestList[#(#^2-3)&,7,4] (* Harvey P. Dale, Aug 11 2021 *)

Formula

From Peter Bala, Feb 01 2017: (Start)
a(n) = ((7 + sqrt(45))/2)^(3^n) + ((7 - sqrt(45))/2)^(3^n).
a(n) = 2*T(3^n,7/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
Product_{n >= 0} (1 + 2/(a(n) - 1)) = 3*sqrt(5)/5.
Cf. A001999 and A219161. (End)
From Peter Bala, Nov 15 2022: (Start)
a(n) = Lucas(4*(3^n)).
a(n+1) == a(n) (mod 3^(n+1)) (a particular case of the Gauss congruences for the Lucas numbers).
Conjecture: a(n+1) == a(n) (mod 3^(n+r+2)) for n >= r.
The least positive residue of a(n) mod(3^n) = 3^n - 2 = A058481(n). In the ring of 3-adic integers the limit_{n -> oo} a(n) exists and is equal to -2.
Product_{k = 0..n} (a(k) - 1) = (1/3)*Lucas(6*(3^n)). (End)

A282180 a(n+1) = a(n)*(a(n)^2 - 3) with a(0) = 8.

Original entry on oeis.org

8, 488, 116212808, 1569502402942700328379688, 3866214585126515728777536857817155683642224883875510905654220958052649608
Offset: 0

Views

Author

Vincenzo Librandi, Feb 10 2017

Keywords

Crossrefs

Cf. similar sequences with initial value k: A001999 (k=3), A219160 (k=4), A219161 (k=5), A112845 (k=6), A002000 (k=7), this sequence (k=8), A282181 (k=9), A006242 (k=10), A006243 (k=198).

Programs

  • Magma
    [n eq 1 select 8 else Self(n-1)^3 - 3*Self(n-1): n in [1..6]];
  • Mathematica
    RecurrenceTable[{a[0] == 8, a[n] == a[n-1]^3 - 3 a[n-1]}, a, {n, 8}]

Formula

a(n) = (4 + sqrt(15))^(3^n) + (4 - sqrt(15))^(3^n). - Bruno Berselli, Feb 10 2017
a(n) = -2*cos(3^n * arccos(-4)). - Daniel Suteu, Feb 10 2017
Showing 1-5 of 5 results.