cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A001999 a(n) = a(n-1)*(a(n-1)^2 - 3).

Original entry on oeis.org

3, 18, 5778, 192900153618, 7177905237579946589743592924684178
Offset: 0

Views

Author

Keywords

Comments

The next terms in the sequence contain 102 and 305 digits. - Harvey P. Dale, Jun 09 2011
From Peter Bala, Nov 13 2012: (Start)
The present sequence is the case x = 3 of the following general remarks. For other cases see A219160 (x = 4), A219161 (x = 5) and A112845 (x = 6).
Let x > 2 and let alpha := {x + sqrt(x^2 - 4)}/2. Define a sequence a(n) (which depends on x) by setting a(n) = alpha^(3^n) + (1/alpha)^(3^n). Then it is easy to verify that the sequence a(n) satisfies the recurrence equation a(n+1) = a(n)^3 - 3*a(n) with the initial condition a(0) = x.
We have the following identity, valid for x > 2: sqrt((x + 2)/(x - 2)) = (1 + 2/(x-1))*sqrt((y + 2)/(y - 2)), where y = x^3 - 3*x. Iterating the identity produces the product expansion sqrt((x+2)/(x-2)) = Product_{n = 0..oo} (1 + 2/(a(n) - 1)), with a(0) = x and a(n+1) = a(n)^3 - 3*a(n). The rate of convergence is cubic (Fine).
For similar results to the above see A001566 and A219162. (End)
Let b(n) = a(n) - 3. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. - Peter Bala, Dec 08 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    NestList[#(#^2-3)&,3,6] (* Harvey P. Dale, Jun 09 2011 *)
    RecurrenceTable[{a[n] == a[n - 1]^3 - 3*a[n - 1], a[0] == 3}, a, {n,
      0, 5}] (* G. C. Greubel, Dec 30 2016 *)
  • PARI
    a(n)=2*fibonacci(2*3^n+1)-fibonacci(2*3^n)

Formula

a(n) = 2*F(2*3^n+1) - F(2*3^n) = ceiling(tau^(2*3^n)) where F(k) = A000045(k) is the k-th Fibonacci number and tau is the golden ratio. - Benoit Cloitre, Nov 29 2002
From Peter Bala, Nov 13 2012: (Start)
a(n) = ((3 + sqrt(5))/2)^(3^n) + ((3 - sqrt(5))/2)^(3^n).
Product_{n >= 0} (1 + 2/(a(n) - 1)) = sqrt(5).
a(n) = A002814(n+1) + 1. (End)
a(n) = 2*T(3^n,3/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. Cf. A219161. - Peter Bala, Feb 01 2017
From Amiram Eldar, Jan 12 2022: (Start)
a(n) = A000032(2*3^n).
a(n) = A006267(n)^2 + 2.
Product_{k=0..n} (a(k)-1) = Fibonacci(3^(n+1)) = A045529(n+1) (Janous, 2001). (End)
Sum_{n>=0} arctanh(1/a(n)) = log(5)/4 (Ohtsu, 2022). - Amiram Eldar, Dec 15 2022

A006275 Pierce expansion of sqrt(2) - 1.

Original entry on oeis.org

2, 5, 7, 197, 199, 7761797, 7761799, 467613464999866416197, 467613464999866416199, 102249460387306384473056172738577521087843948916391508591105797
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Nov 22 2012: (Start)
For x in the open interval (0,1) define the map f(x) = 1 - x*floor(1/x). The n-th term (n >= 0) in the Pierce expansion of x is given by floor(1/f^(n)(x)), where f^(n)(x) denotes the n-th iterate of the map f, with the convention that f^(0)(x) = x. The present sequence is the case x = sqrt(2) - 1.
The Pierce expansion of (sqrt(2) - 1)^(3^n) is [a(0)*a(2)*...*a(2*n), a(2*n+1), a(2*n+2), ...] = [sqrt(a(2*n+1) - 1), a(2*n+1), a(2*n+2), ...]. The Pierce expansion of (sqrt(2) - 1)^(2*3^n) is [a(2*n+1), a(2*n+2), ...]. Some examples of the associated alternating series are given below.
(End)

Examples

			Let c(0)=6, c(n+1) = c(n)^3-3*c(n); then this sequence is 2, c(0)-1, c(0)+1, c(1)-1, c(1)+1, c(2)-1, c(2)+1, ...
From _Peter Bala_, Nov 22 2012: (Start)
Let x = sqrt(2) - 1. We have the alternating series expansions
x = 1/2 - 1/(2*5) + 1/(2*5*7) - 1/(2*5*7*197) + ...
x^3 = 1/14 - 1/(14*197) + 1/(14*197*199) - ...
x^9 = 1/2786 - 1/(2786*7761797) + 1/(2786*7761797*7761799) - ...,
where 2786 = 2*7*199, and also
x^2 = 1/5 - 1/(5*7) + 1/(5*7*197) - 1/(5*7*197*199) + ...
x^6 = 1/197 - 1/(197*199) + 1/(197*199*7761797) - ...
x^18 = 1/7761797 - 1/(7761797*7761799) + ....
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[Sqrt[2] - 1, 7!], 10] (* G. C. Greubel, Nov 14 2016 *)
  • PARI
    my(r=1+quadgen(8)); for(n=1, 10, print1(floor(r), ", "); r=r/(r-floor(r)));

Formula

Let u(0)=1+sqrt(2) and u(n+1)=u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n)=floor(u(n)). - Benoit Cloitre, Mar 09 2004
From Peter Bala, Nov 22 2012: (Start)
a(2*n+2) = (3 + 2*sqrt(2))^(3^n) + (3 - 2*sqrt(2))^(3^n) + 1.
a(2*n+1) = (3 + 2*sqrt(2))^(3^n) + (3 - 2*sqrt(2))^(3^n) - 1. (End)
sqrt(2) - 1 = a(0)/a(1) + (a(0)*a(2))/(a(1)*a(3)) + (a(0)*a(2)*a(4))/(a(1)*a(3)*a(5)) + ... = 2/5 + (2*7)/(5*197) + (2*7*199)/(5*197*7761797) + ... . - Peter Bala, Dec 03 2012

Extensions

More terms from James Sellers, May 19 2000

A112845 Recurrence a(n) = a(n-1)^3 - 3*a(n-1) with a(0) = 6.

Original entry on oeis.org

6, 198, 7761798, 467613464999866416198, 102249460387306384473056172738577521087843948916391508591105798
Offset: 0

Views

Author

Eric W. Weisstein, Sep 21 2005

Keywords

Comments

Identical to A006243 apart from the initial term. For some general remarks on this recurrence see A001999. - Peter Bala, Nov 13 2012

Crossrefs

Cf. A006243. - R. J. Mathar, Aug 15 2008

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1]^3 - 3*a[n - 1], a[0] == 6}, a, {n,
      0, 5}] (* G. C. Greubel, Dec 30 2016 *)
    NestList[#^3-3#&,6,5] (* Harvey P. Dale, Jul 23 2025 *)

Formula

a(n) = -2*cos(3^n*arccos(-3)).
From Peter Bala, Nov 13 2012: (Start)
a(n) = (3 + 2*sqrt(2))^(3^n) + (3 - 2*sqrt(2))^(3^n).
Product {n = 0..inf} (1 + 2/(a(n) - 1)) = sqrt(2).
(End)

A006273 Numerators of a continued fraction for (3+sqrt(13))/2.

Original entry on oeis.org

3, 10, 1297, 2186871697, 10458512317535240383929505297
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For denominators see A006274.

Programs

  • Maple
    a := proc (n) option remember; if n = 1 then 10 else a(n-1)^3 + 3*a(n-1)^2 - 3 end if; end proc:
    seq(a(n), n = 1..5); # Peter Bala, Jan 19 2022

Formula

From Peter Bala, Jan 19 2022: (Start)
a(n) = (11/2 + 3/2*sqrt(13))^3^(n-1) + (11/2 - 3/2*sqrt(13))^3^(n-1) - 1.
a(1) = 10 and a(n) = a(n-1)^3 + 3*a(n-1)^2 - 3 for n >= 2.
a(1) = 10 and a(n) = 13*(Product_{k = 1..n-1} a(k))^2 - 3 for n >= 2.
a(n) = A006268(n-1)^2 + 1 for n >= 1.
13 - 9*Product_{n = 1..N} (1 + 2/a(n))^2 = 52/(a(N+1) + 3). Therefore
sqrt(13) = 3*(1 + 2/10) * (1 + 2/1297) * (1 + 2/2186871697) * ... The convergence is cubic: the first six factors of the product give sqrt(13) correct to more than 750 decimal places.
3/sqrt(13) = (1 - 2/(10+2)) * (1 - 2/(1297+2)) * (1 - 2/(2186871697+2)) * .... (End)

A006284 Pierce expansion for Euler's constant.

Original entry on oeis.org

1, 2, 6, 13, 21, 24, 225, 615, 17450, 23228, 57774, 221361, 522377, 793040, 1706305, 8664354, 19037086, 51965160, 56870701, 124645388, 784244500, 792809072, 3675221276, 42108268014, 53633289500, 56827261536, 67080647365
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[EulerGamma, 7!], 25] (* G. C. Greubel, Nov 14 2016 *)
  • PARI
    r=1/Euler;for(n=1,30,r=r/(r-floor(r));print1(floor(r),","))

Formula

If u(0) = exp(1/m), where m is an integer >=1, and u(n+1) = u(n)/frac(u(n)) then floor(u(n)) = m*n. Let u(0)=1/gamma and u(n+1) = u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n) = floor(u(n)) - Benoit Cloitre, Mar 09 2004

A118242 Pierce expansion of 1/phi.

Original entry on oeis.org

1, 2, 4, 17, 19, 5777, 5779, 192900153617, 192900153619, 7177905237579946589743592924684177, 7177905237579946589743592924684179
Offset: 1

Views

Author

Eric W. Weisstein, Apr 17 2006

Keywords

Comments

Differs from A006276 in the first term only.

Crossrefs

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[(Sqrt[5] - 1)/2, 7!], 10] (* G. C. Greubel, Nov 14 2016 *)

Formula

A118242(n) = A006276(n-1) for n>1.
From Peter Bala, Dec 03 2012: (Start)
Odd-indexed terms give A002813; even-indexed terms give A002814.
The Pierce series expansion is the alternating series 1/phi = 1/2*(sqrt(5) - 1) = 1/1 - 1/(1*2) + 1/(1*2*4) - 1/(1*2*4*17) + 1/(1*2*4*17*19) - ....
Another series expansion is
1/phi = a(1)/a(2) + (a(1)*a(3))/(a(2)*a(4)) + (a(1)*a(3)*a(5))/(a(2)*a(4)*a(6)) + ... = 1/2 + (1*4)/(2*17) + (1*4*19)/(2*17*5777) + ....
(End)

A006271 Numerators of a continued fraction for 1 + sqrt(2).

Original entry on oeis.org

2, 5, 197, 7761797, 467613464999866416197, 102249460387306384473056172738577521087843948916391508591105797
Offset: 0

Views

Author

Keywords

Comments

With b(n) = floor((1+sqrt(2))^n) (cf. A080039) the terms appear to be b(2*3^n). - Joerg Arndt, Apr 29 2013
Note that 1 + sqrt(2) = (c + sqrt(c^2+4))/2 and has regular continued fraction [c, c, ...] with c = 2. With b(n) = A006266(n), it can be expanded into an irregular continued fraction f(1) = b(1) and f(n) = (b[n-1]^2+1)/(b[n]-b[n-1]), and numerator(f(n)) = a(n) (cf. Shallit). - Michel Marcus, Apr 29 2013

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For denominators see A006272. Cf. A002814, A006266, A006273, A006275, A006276.

Programs

  • Maple
    a := proc (n) option remember; if n = 1 then 5 else a(n-1)^3 + 3*a(n-1)^2 - 3 end if; end proc:
    seq(a(n), n = 1 .. 5); # Peter Bala, Jan 19 2022

Formula

From Peter Bala, Jan 18 2022: (Start)
a(n) = (3 + 2*sqrt(2))^3^(n-1) + (3 - 2*sqrt(2))^3^(n-1) - 1 for n >= 1.
a(n) = A006266(n)^2 + 1 for n >= 1.
a(1) = 5 and a(n) = a(n-1)^3 + 3*a(n-1)^2 - 3 for n >= 2.
a(1) = 5 and a(n) = 8*(Product_{k = 1..n-1} a(k))^2 - 3 for n >= 2.
2 - Product_{n = 1..N} (1 + 2/a(n))^2 = 8/(a(N+1) + 3). Therefore
sqrt(2) = (1 + 2/5) * (1 + 2/197) * (1 + 2/7761797) * (1 + 2/ 467613464999866416197) * ... - see Bauer.
The convergence is cubic - see Fine. The first six factors of the product give sqrt(2) correct to more than 500 decimal places. (End)

Extensions

Previous values for a(3) and a(4) were 776 and 1797. They have been merged into 7761797 to reflect the 2nd continued fraction on page 6 of Shallit paper by Michel Marcus, Apr 29 2013

A091831 Pierce expansion of 1/sqrt(2).

Original entry on oeis.org

1, 3, 8, 33, 35, 39201, 39203, 60245508192801, 60245508192803, 218662352649181293830957829984632156775201, 218662352649181293830957829984632156775203
Offset: 0

Views

Author

Benoit Cloitre, Mar 09 2004

Keywords

Comments

If u(0)=exp(1/m) m integer>1 and u(n+1)=u(n)/frac(u(n)) then floor(u(n))=m*n.

Crossrefs

Cf. A006784 (Pierce expansion definition), A028254

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[2^(-1/2), 7!], 17] (* G. C. Greubel, Nov 13 2016 *)
  • PARI
    r=sqrt(2);for(n=1,10,r=r/(r-floor(r));print1(floor(r),","))

Formula

Let u(0)=sqrt(2) and u(n+1)=u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n)=floor(u(n)).
1/sqrt(2)= 1/a(1) - 1/a(1)/a(2) + 1/a(1)/a(2)/a(3) - 1/a(1)/a(2)/a(3)/a(4)...
limit n -> infinity a(n)^(1/n) = e.

A219506 Pierce expansion of 2 - sqrt(3).

Original entry on oeis.org

3, 5, 51, 53, 140451, 140453, 2770663499604051, 2770663499604053, 21269209556953516583554114034636483645584976451, 21269209556953516583554114034636483645584976453
Offset: 0

Views

Author

Peter Bala, Nov 22 2012

Keywords

Comments

For x in the open interval (0,1) define the map f(x) = 1 - x*floor(1/x). The n-th term (n >= 0) in the Pierce expansion of x is given by floor(1/f^(n)(x)), where f^(n)(x) denotes the n-th iterate of the map f, with the convention that f^(0)(x) = x.
The present sequence is the case x = 2 - sqrt(3).
Shallit has shown that the Pierce expansion of the quadratic irrational (c - sqrt(c^2 - 4))/2 has the form [c(0) - 1, c(0) + 1, c(1) - 1, c(1) + 1, c(2) - 1, c(2) + 1, ...], where c(0) = c and c(n+1) = c(n)^3 - 3*c(n). This is the case c = 4. For other cases see A006276 (c = 3), A219507 (c = 5) and A006275 (essentially c = 6 apart from the initial term).
The Pierce expansion of ((c - sqrt(c^2 - 4))/2)^(3^n) is [c(n) - 1, c(n) + 1, c(n+1) - 1, c(n+1) + 1, c(n+2) - 1, c(n+2) + 1, ...].

Examples

			We have the alternating series expansions
2 - sqrt(3) = 1/3 - 1/(3*5) + 1/(3*5*51) - 1/(3*5*51*53) + ...
(2 - sqrt(3))^3 = 1/51 - 1/(51*53) + 1/(51*53*140451) - ...
(2 - sqrt(3))^9 = 1/140451 - 1/(140451*140453) + ....
		

Crossrefs

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[2 - Sqrt[3] , 7!], 10] (* G. C. Greubel, Nov 14 2016 *)

Formula

a(2*n) = (2 + sqrt(3))^(3^n) + (2 - sqrt(3))^(3^n) - 1.
a(2*n + 1) = (2 + sqrt(3))^(3^n) + (2 - sqrt(3))^(3^n) + 1.
From Peter Bala, Jan 18 2022: (Start)
a(2*n+2) = a(2*n)^3 + 3*a(2*n)^2 - 3; a(2*n+1) = a(2*n-1)^3 - 3*a(2*n-1)^2 + 3.
a(2*n) = 6*(Product_{k = 1..n-1} a(2*k))^2 - 3, with a(0) = 1;
a(2*n+1) = 2*(Product_{k = 0..n-1} a(2*k+1))^2 + 3, with a(1) = 5.
sqrt(3) = (1 + 2/3)*(1 + 2/51)*(1 + 2/140451)*(1 + 2/2770663499604051)* .... See Bauer.
1/sqrt(3) = (1 - 2/5)*(1 - 2/53)*(1 - 2/140453)*(1 - 2/2770663499604053)* .... (End)

A219507 Pierce expansion of (5 - sqrt(21))/2.

Original entry on oeis.org

4, 6, 109, 111, 1330669, 1330671, 2356194280407770989, 2356194280407770991, 13080769480548649962914459850235688797656360638877986029, 13080769480548649962914459850235688797656360638877986031
Offset: 0

Views

Author

Peter Bala, Nov 22 2012

Keywords

Comments

For x in the open interval (0,1) define the map f(x) = 1 - x*floor(1/x). The n-th term (n >= 0) in the Pierce expansion of x is given by floor(1/f^(n)(x)), where f^(n)(x) denotes the n-th iterate of the map f, with the convention that f^(0)(x) = x.
The present sequence is the case x = 1/2*(5 - sqrt(21)).
Jeffrey Shallit has shown that the Pierce expansion of the quadratic irrational (c - sqrt(c^2 - 4))/2 has the form [c(0) - 1, c(0) + 1, c(1) - 1, c(1) + 1, c(2) - 1, c(2) + 1, ...], where c(0) = c and c(n+1) = c(n)^3 - 3*c(n). This is the case c = 5. For other cases see A006276 (c = 3), A219506 (c = 4) and A006275 (essentially c = 6 apart from the initial term).
The Pierce expansion of ((c - sqrt(c^2 - 4))/2)^(3^n) is [c(n) - 1, c(n) + 1, c(n+1) - 1, c(n+1) + 1, c(n+2) - 1, c(n+2) + 1, ...].

Examples

			Let x = 1/2*(5 - sqrt(21)). We have the alternating series expansions
x = 1/4 - 1/(4*6) + 1/(4*6*109) - 1/(4*6*109*111) + ...
x^3 = 1/109 - 1/(109*111) + 1/(109*111*1330669) - ...
x^9 = 1/1330669 - 1/(1330669*1330671) + ....
		

Crossrefs

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[(5 - Sqrt[21])/2 , 7!], 10] (* G. C. Greubel, Nov 14 2016 *)

Formula

a(2*n) = (1/2*(5 + sqrt(21)))^(3^n) + (1/2*(5 - sqrt(21)))^(3^n) - 1.
a(2*n+1) = (1/2*(5 + sqrt(21)))^(3^n) + (1/2*(5 - sqrt(21)))^(3^n) + 1.
Showing 1-10 of 13 results. Next