cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A006276 Pierce expansion of (3 - sqrt(5))/2.

Original entry on oeis.org

2, 4, 17, 19, 5777, 5779, 192900153617, 192900153619, 7177905237579946589743592924684177, 7177905237579946589743592924684179, 369822356418414944143680173221426891716916679027557977938929258031490127514207143830378340325399155217
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Nov 22 2012: (Start)
For x in the open interval (0,1) define the map f(x) = 1 - x*floor(1/x). The n-th term (n >= 0) in the Pierce expansion of x is given by floor(1/f^(n)(x)), where f^(n)(x) denotes the n-th iterate of the map f, with the convention that f^(0)(x) = x.
Let x = (sqrt(5) - 1)/2, the reciprocal of the golden ratio, and let X = (3 - sqrt(5))/2 so that X = x^2. The Pierce expansion of X^(3^n) is [a(2*n), a(2*n+1), a(2*n+2), ...]. The Pierce expansion of x is A118242 = [1, a(0), a(1), a(2), ...]. The Pierce expansion of x^3 is [a(1), a(2), a(3), ...]. In general, the Pierce expansion of x^(3^n) for n >= 1 is [a(1)*a(3)*...*a(2*n-1), a(2*n), a(2*n+1), a(2*n+2), ...] = [sqrt(a(2*n) - 1), a(2*n), a(2*n+1), a(2*n+2), ...]. Some examples of the associated alternating series are given below.
(End)

Examples

			From _Peter Bala_, Nov 22 2012: (Start)
Let x = (sqrt(5) - 1)/2. We have the alternating series expansions
x = 1 - 1/2 + 1/(2*4) - 1/(2*4*17) + 1/(2*4*17*19) - ...
x^2 = 1/2 - 1/(2*4) + 1/(2*4*17) - 1/(2*4*17*19) + ...
x^6 = 1/17 - 1/(17*19) + 1/(17*19*5777) - ...
as well as
x^3 = 1/4 - 1/(4*17) + 1/(4*17*19) - 1/(4*17*19*5777) + ...
4*x^9 = 1/19 - 1/(19*5777) + 1/(19*5777*5779) - ...
4*19*x^27 = 1/5779 - 1/(5779*192900153617) + ....
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A118242.

Programs

  • Mathematica
    Table[c=2*3^Floor[n/2]; 2*Fibonacci[c+1]-Fibonacci[c]-(-1)^n, {n,0,10}] (* Harvey P. Dale, Oct 22 2013 *)
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[(3 - Sqrt[5])/2, 7!], 10] (* G. C. Greubel, Nov 14 2016 *)
  • PARI
    r=(1+sqrt(5))/2; for(n=1,10, r=r/(r-floor(r)) print1(floor(r),","))

Formula

Let c(0)=3, c(n+1) = c(n)^3-3*c(n) [A001999]; then this sequence is c(0)-1, c(0)+1, c(1)-1, c(1)+1, c(2)-1, c(2)+1, ......
a(n) = 2*F(2*3^floor(n/2)+1)-F(2*3^floor(n/2))-(-1)^n where F(k) denotes the k-th Fibonacci number A000045(k)
Let u(0)=(1+sqrt(5))/2 and u(n+1)=u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n)=floor(u(n)). - Benoit Cloitre, Mar 09 2004
a(2*n) = ((3 + sqrt(5))/2)^(3^n) + ((3 - sqrt(5))/2)^(3^n) - 1.
a(2*n+1) = ((3 + sqrt(5))/2)^(3^n) + ((3 - sqrt(5))/2)^(3^n) + 1. - Peter Bala, Nov 22 2012

Extensions

More terms from James Sellers, May 19 2000

A140076 Pierce expansion of the cube root of 1/2.

Original entry on oeis.org

1, 4, 5, 7, 8, 18, 384, 7958, 14304, 16623, 18610, 20685, 72923, 883177, 1516692, 2493788, 2504069, 22881179, 110219466, 2241255405, 34982468090, 64356019489, 110512265214, 1142808349967, 3550630472116, 5238523454726, 7129035664265
Offset: 1

Views

Author

Gerard P. Michon, Jun 01 2008

Keywords

Comments

2^(-1/3) = 1-1/4(1-1/5(1-1/7(1-1/8(1-1/18(1-1/384(...))))))

Examples

			a(1) is 1 because the floor of 2^(1/3) is 1.
a(2)=4 because 1/(1-2^(-1/3)) is 4.8473221...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 80; x[1] = 2^(-1/3); a[n_] := a[n] = Floor[1/x[n]]; x[n_] := x[n] = 1 - a[n-1]*x[n-1]; Table[a[n], {n, 1, 27}] (* Jean-François Alcover, Dec 12 2011 *)
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[2^(-1/3), 7!], 25] (* G. C. Greubel, Nov 14 2016 *)

Formula

Starting with x(1)=2^(-1/3), a(n) = floor(1/x(n)) and x(n+1) = 1-a(n)x(n).
Showing 1-2 of 2 results.