cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A006267 Continued cotangent for the golden ratio.

Original entry on oeis.org

1, 4, 76, 439204, 84722519070079276, 608130213374088941214747405817720942127490792974404
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 1 then 4 else a(n-1)^3 + 3*a(n-1) end if; end: seq(a(n), n = 1..5); # Peter Bala, Nov 15 2022
  • Mathematica
    c = N[GoldenRatio, 1000]; Table[Round[c^(3^n)], {n, 1, 8}] (* Artur Jasinski, Sep 22 2008 *)
    a = {}; x = 4; Do[AppendTo[a, x]; x = x^3 + 3 x, {n, 1, 10}]; a (* Artur Jasinski, Sep 24 2008 *)
  • PARI
    a(n)=fibonacci(3^n+1) + fibonacci(3^n-1) \\ Andrew Howroyd, Dec 30 2024
    
  • PARI
    a(n)={my(t=1); for(i=1, n, t = t^3 + 3*t); t} \\ Andrew Howroyd, Dec 30 2024

Formula

(1+sqrt(5))/2 = cot(Sum_{n>=0} (-1)^n*acot(a(n))); let b(0) = (1+sqrt(5))/2, b(n) = (b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))) then a(n) = floor(b(n)). - Benoit Cloitre, Apr 10 2003
a(n) = A000204(3^n). - Benoit Cloitre, Sep 18 2005
a(n) = round(c^(3^n)) where c = GoldenRatio = 1.6180339887498948482... = (sqrt(5)+1)/2 (A001622). - Artur Jasinski, Sep 22 2008
a(n) = a(n-1)^3 + 3*a(n-1), a(0) = 1. - Artur Jasinski, Sep 24 2008
a(n+1) = Product_{k = 0..n} A002813(k). Thus a(n) divides a(n+1). - Peter Bala, Nov 22 2012
Sum_{n>=0} a(n)^2/A045529(n+1) = 1. - Amiram Eldar, Jan 12 2022
a(n) = Product_{k=0..n-1} (Lucas(2*3^k) + 1) (Usiskin, 1973). - Amiram Eldar, Jan 29 2022
From Peter Bala, Nov 15 2022: (Start)
a(n) = Lucas(3^n) for n >= 1.
a(n) == 1 (mod 3) for n >= 1.
a(n+1) == a(n) (mod 3^(n+1)) for n >= 1 (a particular case of the Gauss congruences for the Lucas numbers).
The smallest positive residue of a(n) mod 3^n = A268924(n).
In the ring of 3-adic integers the limit_{n -> oo} a(n) exists and is equal to A271223. Cf. A006266. (End)

Extensions

The next term is too large to include.

A006268 A continued cotangent.

Original entry on oeis.org

3, 36, 46764, 102266868132036, 1069559300034650646049671039050649693658764
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Continued cotangents: A006267, A006266, A006269, A145180, A145181, A145182, A145183, A145184, A145185, A145186, A145187, A145188, A145189 (k = 1 to 15 with k=4 being A006267(n+1)).

Programs

  • Mathematica
    a = {}; k = 3; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a (* Artur Jasinski, Oct 03 2008 *)
    Table[Round[N[(3/2 + Sqrt[13]/2)^(3^(n - 1)), 1000]], {n, 1, 8}] (* Artur Jasinski, Oct 03 2008 *)
  • PARI
    a(n) = if (n==0, 3, a(n-1)^3 + 3*a(n-1)); \\ Michel Marcus, Aug 28 2020

Formula

From Artur Jasinski, Oct 03 2008: (Start)
a(n+1) = a(n)^3 + 3*a(n) and a(0)=3.
a(n) = round((3/2 + sqrt(13)/2)^(3^(n - 1))). (End)
From Peter Bala, Jan 19 2022: (Start)
a(n) = (3/2 + sqrt(13)/2)^(3^(n-1)) + (3/2 - sqrt(13)/2)^(3^(n-1))
a(n) divides a(n+1) and b(n) = a(n+1)/a(n) satisfies the recurrence b(n+1) = b(n)^3 - 3*b(n-1)^2 + 3. For remarks about this recurrence see A002813.
1 + a(n)^2 = A006273(n+1). (End)

A145180 Continued cotangent recurrence a(n+1) = a(n)^3 + 3*a(n) and a(1) = 6.

Original entry on oeis.org

6, 234, 12813606, 2103846732371087589834, 9311985549495522884757461748592522243432897275494229148348315206
Offset: 1

Views

Author

Artur Jasinski, Oct 03 2008

Keywords

Comments

General formula for continued cotangent recurrences type:
a(n+1) = a(n)3 + 3*a(n) and a(1)=k is following:
a(n) = Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))].
The next term (a(6)) has 192 digits. - Harvey P. Dale, Mar 09 2013

Crossrefs

Programs

  • Mathematica
    a = {}; k = 6; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a
    or
    Table[Floor[((6 + Sqrt[40])/2)^(3^(n - 1))], {n, 1, 5}] (* Artur Jasinski *)
    NestList[#^3+3#&,6,5] (* Harvey P. Dale, Mar 09 2013 *)

Formula

a(n+1)=a(n)^3 + 3*a(n) and a(1)=6
a(n)=Floor[((6+Sqrt[6^2+4])/2)^(3^(n-1))]
a(n) divides a(n+1) and b(n) = a(n+1)/a(n) satisfies the recurrence b(n+1) = b(n)^3 - 3*b(n-1)^2 + 3. See A002813. - Peter Bala, Nov 23 2012

A118242 Pierce expansion of 1/phi.

Original entry on oeis.org

1, 2, 4, 17, 19, 5777, 5779, 192900153617, 192900153619, 7177905237579946589743592924684177, 7177905237579946589743592924684179
Offset: 1

Views

Author

Eric W. Weisstein, Apr 17 2006

Keywords

Comments

Differs from A006276 in the first term only.

Crossrefs

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[(Sqrt[5] - 1)/2, 7!], 10] (* G. C. Greubel, Nov 14 2016 *)

Formula

A118242(n) = A006276(n-1) for n>1.
From Peter Bala, Dec 03 2012: (Start)
Odd-indexed terms give A002813; even-indexed terms give A002814.
The Pierce series expansion is the alternating series 1/phi = 1/2*(sqrt(5) - 1) = 1/1 - 1/(1*2) + 1/(1*2*4) - 1/(1*2*4*17) + 1/(1*2*4*17*19) - ....
Another series expansion is
1/phi = a(1)/a(2) + (a(1)*a(3))/(a(2)*a(4)) + (a(1)*a(3)*a(5))/(a(2)*a(4)*a(6)) + ... = 1/2 + (1*4)/(2*17) + (1*4*19)/(2*17*5777) + ....
(End)
Showing 1-4 of 4 results.