cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001999 a(n) = a(n-1)*(a(n-1)^2 - 3).

Original entry on oeis.org

3, 18, 5778, 192900153618, 7177905237579946589743592924684178
Offset: 0

Views

Author

Keywords

Comments

The next terms in the sequence contain 102 and 305 digits. - Harvey P. Dale, Jun 09 2011
From Peter Bala, Nov 13 2012: (Start)
The present sequence is the case x = 3 of the following general remarks. For other cases see A219160 (x = 4), A219161 (x = 5) and A112845 (x = 6).
Let x > 2 and let alpha := {x + sqrt(x^2 - 4)}/2. Define a sequence a(n) (which depends on x) by setting a(n) = alpha^(3^n) + (1/alpha)^(3^n). Then it is easy to verify that the sequence a(n) satisfies the recurrence equation a(n+1) = a(n)^3 - 3*a(n) with the initial condition a(0) = x.
We have the following identity, valid for x > 2: sqrt((x + 2)/(x - 2)) = (1 + 2/(x-1))*sqrt((y + 2)/(y - 2)), where y = x^3 - 3*x. Iterating the identity produces the product expansion sqrt((x+2)/(x-2)) = Product_{n = 0..oo} (1 + 2/(a(n) - 1)), with a(0) = x and a(n+1) = a(n)^3 - 3*a(n). The rate of convergence is cubic (Fine).
For similar results to the above see A001566 and A219162. (End)
Let b(n) = a(n) - 3. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. - Peter Bala, Dec 08 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    NestList[#(#^2-3)&,3,6] (* Harvey P. Dale, Jun 09 2011 *)
    RecurrenceTable[{a[n] == a[n - 1]^3 - 3*a[n - 1], a[0] == 3}, a, {n,
      0, 5}] (* G. C. Greubel, Dec 30 2016 *)
  • PARI
    a(n)=2*fibonacci(2*3^n+1)-fibonacci(2*3^n)

Formula

a(n) = 2*F(2*3^n+1) - F(2*3^n) = ceiling(tau^(2*3^n)) where F(k) = A000045(k) is the k-th Fibonacci number and tau is the golden ratio. - Benoit Cloitre, Nov 29 2002
From Peter Bala, Nov 13 2012: (Start)
a(n) = ((3 + sqrt(5))/2)^(3^n) + ((3 - sqrt(5))/2)^(3^n).
Product_{n >= 0} (1 + 2/(a(n) - 1)) = sqrt(5).
a(n) = A002814(n+1) + 1. (End)
a(n) = 2*T(3^n,3/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. Cf. A219161. - Peter Bala, Feb 01 2017
From Amiram Eldar, Jan 12 2022: (Start)
a(n) = A000032(2*3^n).
a(n) = A006267(n)^2 + 2.
Product_{k=0..n} (a(k)-1) = Fibonacci(3^(n+1)) = A045529(n+1) (Janous, 2001). (End)
Sum_{n>=0} arctanh(1/a(n)) = log(5)/4 (Ohtsu, 2022). - Amiram Eldar, Dec 15 2022

A002814 For n > 1: a(n) = a(n-1)^3 + 3a(n-1)^2 - 3; a(0) = 1, a(1) = 2.

Original entry on oeis.org

1, 2, 17, 5777, 192900153617, 7177905237579946589743592924684177
Offset: 0

Views

Author

Keywords

Comments

An infinite coprime sequence defined by recursion. - Michael Somos, Mar 14 2004
Next terms have 102 and 305 digits. - Harvey P. Dale, Jun 06 2011
From Peter Bala, Nov 15 2012: (Start)
The present sequence is the case x = 3 of the following general remarks. The recurrence equation a(n+1) = a(n)^3 + 3*a(n)^2 - 3 with the initial condition a(1) = x - 1 > 1 has the explicit solution a(n+1) = alpha^(3^n) + (1/alpha)^(3^n) - 1 for n >= 0, where alpha := {x + sqrt(x^2 - 4)}/2.
Two other recurrences satisfied by the sequence are a(n+1) = (a(1) + 3)*(Product_{k = 1..n} a(k)^2) - 3 and a(n+1) = 1 + (a(1) - 1)*Product_{k = 1..n} (a(k) + 2)^2, both with a(1) = x - 1.
The associated sequence b(n) := a(n) + 1 satisfies the recurrence equation b(n+1) = b(n)^3 - 3*b(n) with the initial condition b(1) = x. See A001999 for the case x = 3. The sequence c(n) := a(n) + 2 satisfies the recurrence equation c(n+1) = c(n)^3 - 3*c(n)^2 + 3 with the initial condition c(1) = x + 1.
The sequences a(n) and b(n) have been considered by Fine and Escott in connection with a product expansion for quadratic irrationals. We have the following identity, valid for x > 2: sqrt((x + 2)/(x - 2)) = (1 + 2/(x-1))*sqrt((y + 2)/(y - 2)), where y = x^3 - 3*x or, equivalently, y - 1 = (x - 1)^3 + 3*(x - 1)^2 - 3. Iterating the identity produces the product expansion sqrt((x+2)/(x-2)) = Product_{n >= 1} (1 + 2/a(n)), with a(1) = x - 1 and a(n+1) = a(n)^3 + 3*a(n)^2 - 3.
For similar results to the above see A145502. See also A219162. (End)
Conjecture: The sequence {a(n) - 2: n >= 1} is a strong divisibility sequence, that is, gcd(a(n) - 2, a(m) - 2) = a(gcd(n, m)) - 2 for n, m >= 1. - Peter Bala, Dec 08 2022

References

  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 397.
  • E. Lucas, Nouveaux théorèmes d'arithmétique supérieure, Comptes Rend., 83 (1876), 1286-1288.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002814 n = a002814_list !! n
    a002814_list = 1 : zipWith div (tail xs) xs
       where xs = map a000045 a000244_list
    -- Reinhard Zumkeller, Nov 24 2012
  • Mathematica
    Join[{1}, NestList[#^3+3#^2-3&,2,5]] (* Harvey P. Dale, Apr 01 2011 *)
  • Maxima
    a[0]:1$ a[1]:2$ a[n]:=a[n-1]^3 + 3*a[n-1]^2-3$ A002814(n):=a[n]$
    makelist(A002814(n),n,0,6); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    a(n)=if(n<2,max(0,n+1),a(n-1)^3+3*a(n-1)^2-3)
    

Formula

a(n) = Fibonacci(3^n)/Fibonacci(3^(n-1)). - Henry Bottomley, Jul 10 2001
a(n+1) = 5*(f(n))^2 - 3, where f(n) = Fibonacci(3^n) = product of first n entries. - Lekraj Beedassy, Jun 16 2003
From Artur Jasinski, Oct 05 2008: (Start)
a(n+2) = (G^(3^(n + 1)) - (1 - G)^(3^(n + 1)))/((G^(3^n)) - (1 - G)^(3^n)) where G = (1 + sqrt(5))/2;
a(n+2) = A045529(n+1)/A045529(n). (End)
From Peter Bala, Nov 15 2012: (Start)
a(n+1) = (1/2*(3 + sqrt(5)))^(3^n) + (1/2*(3 - sqrt(5)))^(3^n) - 1.
The sequence b(n):= a(n) + 2 is a solution to the recurrence b(n+1) = b(n)^3 - 3*b(n)^2 + 3 with b(1) = 4.
Other recurrence equations:
a(n+1) = -3 + 5*(Product_{k = 1..n} a(k)^2) with a(1) = 2.
a(n+1) = 1 + Product_{k = 1..n} (a(k) + 2)^2 with a(1) = 2.
Thus Y := Product_{k = 1..n} a(k) and X := Product_{k = 1..n} (a(k) + 2) give a solution to the Diophantine equation X^2 - 5*Y^2 = -4.
sqrt(5) = Product_{n >= 1} (1 + 2/a(n)). The rate of convergence is cubic. Fine remarks that twelve factors of the product would give well over 300,000 correct decimal digits for sqrt(5).
5 - {Product_{n = 1..N} (1 + 2/a(n))}^2 = 20/(a(N+1) + 3). (End)
a(n) = 2*T(3^(n-1),3/2) - 1 for n >= 1, where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Dec 06 2022

Extensions

Definition improved by Reinhard Zumkeller, Feb 29 2012

A219163 Recurrence equation a(n+1) = a(n)^4 - 4*a(n)^2 + 2 with a(0) = 4.

Original entry on oeis.org

4, 194, 1416317954, 4023861667741036022825635656102100994
Offset: 0

Views

Author

Peter Bala, Nov 13 2012

Keywords

Comments

Bisection of A003010.
a(4) has 147 digits and a(5) has 586 digits. - Harvey P. Dale, Mar 03 2020

Crossrefs

Programs

  • Mathematica
    NestList[#^4-4#^2+2&,4,5] (* Harvey P. Dale, Mar 03 2020 *)
  • PARI
    a(n)={if(n==0,4,a(n-1)^4-4*a(n-1)^2+2)} \\ Edward Jiang, Sep 11 2014

Formula

Let alpha = 2 + sqrt(3). Then a(n) = (alpha)^(4^n) + (1/alpha)^(4^n).
a(n) = A003010(2*n) = A003500(4^n).
Product_{n >= 0} ((1 + 2/a(n))/(1 - 2/a(n)^2)) = sqrt(3).
From Peter Bala, Dec 06 2022: (Start)
a(n) = 2*T(4^n,2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
Let b(n) = a(n) - 4. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. (End)

A219164 Recurrence equation a(n+1) = a(n)^4 - 4*a(n)^2 + 2 with a(0) = 5.

Original entry on oeis.org

5, 527, 77132286527, 35395236908668169265765137996816180039862527
Offset: 0

Views

Author

Peter Bala, Nov 13 2012

Keywords

Comments

Bisection of A003487.
The next term -- a(4) -- has 175 digits. - Harvey P. Dale, Jun 09 2017

Crossrefs

Programs

  • Mathematica
    NestList[#^4-4#^2+2&,5,5] (* Harvey P. Dale, Jun 09 2017 *)

Formula

Let alpha = 1/2*(5 + sqrt(21)). Then a(n) = (alpha)^(4^n) + (1/alpha)^(4^n).
a(n) = A003487(2*n) = A003501(4^n).
Product_{n>=0} ((1 + 2/a(n))/(1 - 2/a(n)^2)) = sqrt(7/3).
From Peter Bala, Dec 06 2022: (Start)
a(n) = 2*T(4^n,5/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
Let b(n) = a(n) - 5. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. (End)

A219165 Recurrence equation a(n+1) = a(n)^4 - 4*a(n)^2 + 2 with a(0) = 6.

Original entry on oeis.org

6, 1154, 1773462177794, 9892082352510403757550172975146702122837936996354
Offset: 0

Views

Author

Peter Bala, Nov 13 2012

Keywords

Comments

Bisection of A003423.

Crossrefs

Formula

Let alpha = 3 + 2*sqrt(2). Then a(n) = (alpha)^(4^n) + (1/alpha)^(4^n).
a(n) = A003423(2*n) = A003499(4^n).
Product {n >= 0} ((1 + 2/a(n))/(1 - 2/a(n)^2)) = sqrt(2).
From Peter Bala, Dec 06 2022: (Start)
a(n) = 2*T(4^n,3), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
Let b(n) = a(n) - 6. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. (End)
Showing 1-5 of 5 results.