A002001 a(n) = 3*4^(n-1), n>0; a(0)=1.
1, 3, 12, 48, 192, 768, 3072, 12288, 49152, 196608, 786432, 3145728, 12582912, 50331648, 201326592, 805306368, 3221225472, 12884901888, 51539607552, 206158430208, 824633720832, 3298534883328, 13194139533312, 52776558133248, 211106232532992, 844424930131968
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Matthew Blair, Rigoberto Flórez, and Antara Mukherjee, Honeycombs in the Pascal triangle and beyond, arXiv:2203.13205 [math.HO], 2022. See p. 5.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 456.
- P. Kernan, Koch Snowflake. [Broken link]
- C. Lanius, The Koch Snowflake.
- Eric Weisstein's World of Mathematics, Koch Snowflake.
- Wikipedia, Koch snowflake.
- Index to divisibility sequences.
- Index entries for linear recurrences with constant coefficients, signature (4).
Crossrefs
Programs
-
Magma
[ (3*4^n+0^n)/4: n in [0..22] ]; // Klaus Brockhaus, Aug 15 2009
-
Maple
A002001:=n->ceil(3*4^(n-1)); seq(A002001(n), n=0..30); # Wesley Ivan Hurt, Dec 17 2013
-
Mathematica
Table[Ceiling[3*4^(n - 1)], {n, 0, 30}] (* Wesley Ivan Hurt, May 26 2014 *)
-
PARI
v=vector(100,n,3*4^(n-2));v[1]=1;v \\ Charles R Greathouse IV, May 19 2011
-
PARI
A002001=n->if(n,3*4^(n-1),1) \\ M. F. Hasler, Dec 17 2013
Formula
From Paul Barry, Apr 20 2003: (Start)
a(n) = (3*4^n + 0^n)/4 (with 0^0=1).
E.g.f.: (3*exp(4*x) + 1)/4. (End)
With interpolated zeros, this has e.g.f. (3*cosh(2*x) + 1)/4 and binomial transform A006342. - Paul Barry, Sep 03 2003
a(n) = Sum_{j=0..1} Sum_{k=0..n} C(2n+j, 2k). - Paul Barry, Nov 29 2003
G.f.: (1-x)/(1-4*x). The sequence 1, 3, -12, 48, -192, ... has g.f. (1+7*x)/(1+4*x). - Paul Barry, Feb 12 2004
a(n) = 3*Sum_{k=0..n-1} a(k). - Adi Dani, Jun 24 2011
G.f.: 1/(1-3*Sum_{k>=1} x^k). - Joerg Arndt, Jun 24 2011
Row sums of triangle A134316. - Gary W. Adamson, Oct 19 2007
If p(1)=3 and p(i)=3 for i > 1, and if A is the Hessenberg matrix of order n defined by A(i,j) = p(j-i+1) when i <= j, A(i,j)=-1 when i=j+1, and A(i,j) = 0 otherwise, then, for n >= 1, a(n) = det A. - Milan Janjic, Apr 29 2010
a(n) = 4*a(n-1), a(0)=1, a(1)=3. - Vincenzo Librandi, Dec 31 2010
G.f.: 1 - G(0) where G(k) = 1 - 1/(1-3*x)/(1-x/(x-1/G(k+1))); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 25 2013
G.f.: x+2*x/(G(0)-2), where G(k) = 1 + 1/(1 - x*(3*k+1)/(x*(3*k+4) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n) = ceiling(3*4^(n-1)). - Wesley Ivan Hurt, Dec 17 2013
Construct the power matrix T(n,j) = [A(n)^*j]*[S(n)^*(j-1)] where A(n)=(3,3,3,...) and S(n)=(0,1,0,0,...). (* is convolution operation.) Then T(n,j) counts n-walks containing j loops on the single vertex graph above and a(n) = Sum_{j=1..n} T(n,j). (S(n)^*0=I.) - David Neil McGrath, Jan 01 2015
Comments