cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002001 a(n) = 3*4^(n-1), n>0; a(0)=1.

Original entry on oeis.org

1, 3, 12, 48, 192, 768, 3072, 12288, 49152, 196608, 786432, 3145728, 12582912, 50331648, 201326592, 805306368, 3221225472, 12884901888, 51539607552, 206158430208, 824633720832, 3298534883328, 13194139533312, 52776558133248, 211106232532992, 844424930131968
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Second binomial transform of (1,1,4,4,16,16,...) = (3*2^n+(-2)^n)/4. - Paul Barry, Jul 16 2003
Number of vertices (or sides) formed after the (n-1)-th iterate towards building a Koch's snowflake. - Lekraj Beedassy, Jan 24 2005
For n >= 1, a(n) is the number of functions f:{1,2,...,n}->{1,2,3,4} such that for a fixed x in {1,2,...,n} and a fixed y in {1,2,3,4} we have f(x) <> y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007
a(n) = (n+1) terms in the sequence (1, 2, 3, 3, 3, ...) dot (n+1) terms in the sequence (1, 1, 3, 12, 48, ...). Example: a(4) = 192 = (1, 2, 3, 3, 3) dot (1, 1, 3, 12, 48) = (1 + 2 + 9 + 36 + 144). - Gary W. Adamson, Aug 03 2010
a(n) is the number of compositions of n when there are 3 types of each natural number. - Milan Janjic, Aug 13 2010
See A178789 for the number of acute (= exterior) angles of the Koch snowflake referred to in the above comment by L. Beedassy. - M. F. Hasler, Dec 17 2013
After 1, subsequence of A033428. - Vincenzo Librandi, May 26 2014
a(n) counts walks (closed) on the graph G(1-vertex; 1-loop x3, 2-loop x3, 3-loop x3, 4-loop x3, ...). - David Neil McGrath, Jan 01 2015
For n > 1, a(n) are numbers k such that (2^(k-1) mod k)/(2^k mod k) = 2; 2^(a(n)-1) == 2^(2n-1) (mod a(n)) and 2^a(n) == 2^(2n-2) (mod a(n)). - Thomas Ordowski, Apr 22 2020
For n > 1, a(n) is the number of 4-colorings of the Hex graph of size 2 X (n-1). More generally, for q > 2, the number of q-colorings of the Hex graph of size 2 X n is given by q*(q - 1)*(q - 2)^(2*n - 2). - Sela Fried, Sep 25 2023
For n > 1, a(n) is the number of pixels in the HEALPix discretization of the sphere of order n-2; HEALPix is a common sphere pixellization scheme in astronomy, cosmology, and nuclear engineering. - Jayson R. Vavrek, Aug 08 2024

Crossrefs

First difference of 4^n (A000302).

Programs

Formula

From Paul Barry, Apr 20 2003: (Start)
a(n) = (3*4^n + 0^n)/4 (with 0^0=1).
E.g.f.: (3*exp(4*x) + 1)/4. (End)
With interpolated zeros, this has e.g.f. (3*cosh(2*x) + 1)/4 and binomial transform A006342. - Paul Barry, Sep 03 2003
a(n) = Sum_{j=0..1} Sum_{k=0..n} C(2n+j, 2k). - Paul Barry, Nov 29 2003
G.f.: (1-x)/(1-4*x). The sequence 1, 3, -12, 48, -192, ... has g.f. (1+7*x)/(1+4*x). - Paul Barry, Feb 12 2004
a(n) = 3*Sum_{k=0..n-1} a(k). - Adi Dani, Jun 24 2011
G.f.: 1/(1-3*Sum_{k>=1} x^k). - Joerg Arndt, Jun 24 2011
Row sums of triangle A134316. - Gary W. Adamson, Oct 19 2007
a(n) = A011782(n) * A003945(n). - R. J. Mathar, Jul 08 2009
If p(1)=3 and p(i)=3 for i > 1, and if A is the Hessenberg matrix of order n defined by A(i,j) = p(j-i+1) when i <= j, A(i,j)=-1 when i=j+1, and A(i,j) = 0 otherwise, then, for n >= 1, a(n) = det A. - Milan Janjic, Apr 29 2010
a(n) = 4*a(n-1), a(0)=1, a(1)=3. - Vincenzo Librandi, Dec 31 2010
G.f.: 1 - G(0) where G(k) = 1 - 1/(1-3*x)/(1-x/(x-1/G(k+1))); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 25 2013
G.f.: x+2*x/(G(0)-2), where G(k) = 1 + 1/(1 - x*(3*k+1)/(x*(3*k+4) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n) = ceiling(3*4^(n-1)). - Wesley Ivan Hurt, Dec 17 2013
Construct the power matrix T(n,j) = [A(n)^*j]*[S(n)^*(j-1)] where A(n)=(3,3,3,...) and S(n)=(0,1,0,0,...). (* is convolution operation.) Then T(n,j) counts n-walks containing j loops on the single vertex graph above and a(n) = Sum_{j=1..n} T(n,j). (S(n)^*0=I.) - David Neil McGrath, Jan 01 2015