A002065 a(n+1) = a(n)^2 + a(n) + 1.
0, 1, 3, 13, 183, 33673, 1133904603, 1285739649838492213, 1653126447166808570252515315100129583, 2732827050322355127169206170438813672515557678636778921646668538491883473
Offset: 0
References
- Mordechai Ben-Ari, Mathematical Logic for Computer Science, Third edition, 173-203.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 433-434.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- John Cerkan, Table of n, a(n) for n = 0..12
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Steven R. Finch, Lehmer's Constant [Broken link]
- Steven R. Finch, Lehmer's Constant [From the Wayback machine]
- Stan C. Kalman and Barry L. Kwasny, Tail-recursive distributed representations and simple recurrent networks, Connection Science, 7 (1995), 61-80.
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340. [Annotated scanned copy]
- H. P. Robinson, Letter to N. J. A. Sloane, Jul 12 1971
- Eric Weisstein's World of Mathematics, Lehmer's Constant
- Eric Weisstein's World of Mathematics, Lehmer Cotangent Expansion
- Wikipedia, Herbrand Structure
- J. W. Wrench, Jr., Letters to N. J. A. Sloane, Feb 1974
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
Programs
-
Magma
[n le 1 select 0 else Self(n-1)^2 + Self(n-1) + 1: n in [1..15]]; // Vincenzo Librandi, Oct 05 2015
-
Mathematica
f[x_] := 1 + x + x^2 ; NestList[f, 1, 7] (* Geoffrey Critzer, May 04 2010 *)
-
Maxima
a(n) := if n = 0 then 1 else a(n-1)^2+a(n-1)+1 $ makelist(a(n),n,0,8); /* Emanuele Munarini, Mar 23 2017 */
-
PARI
a(n)=if(n<1,0,a(n-1)^2+a(n-1)+1)
Formula
a(n) = floor(c^(2^n)) for n > 0, where c = 1.385089248334672909882206535871311526236739234374149506334120193387331772... - Benoit Cloitre, Nov 29 2002
Comments